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CHAPTER 1. INTRODUCTION

The general theme of this dissertation is modeling biofuel feedstock supply. All three essays

focus on different topics relating to the theme. The first essay considers supply of corn stover

for commercial production of a cellulosic ethanol plant. My second essay analyzes the impact of

ethanol mandates on corn prices. The third essay presents a new model of agricultural supply

which combines Positive Mathematical Programming (PMP) with the rational expectations

storage model.

The first essay “Optimal Cellulosic Ethanol Plant Size under Uncertainty” determines the

optimal size of a cellulosic biorefinery under uncertain future corn stover yields and cellulosic

ethanol prices. Using a two period model, the capacity is determined in the first period when

taking into account all the production decisions under various corn yields and gasoline prices.

We also analyze the impacts on optimal plant sizes under two payment schemes for corn stover

procurement. Payment scheme one considers the plant owner as a monopsony who pays for

all transportation costs and all farmers receive the same price per ton of feedstock. Payment

scheme two assumes that farmers pay for transportation costs and the plant owner pays a

uniform per ton price for all delivered stover at the plant. Farmers close to the plant are able to

capture transportation-related rents in the second scheme while they can’t in the first scheme.

Our results show that the optimal capacity under both certainty and uncertainty increases

with a rise in land fraction distributed to biomass or a fall in feedstock transportation cost,

plant scale factor. The sensitivity analysis shows that optimal capacities are almost the same

under certainty and uncertainty when changing parameter in a possible range. Comparing the

plant size under two corn stover payment schemes, the optimized plant size under certainty or

uncertainty decreases when shifting from plant pays the transportation cost scheme to farmers

pay the transportation cost.
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The second essay “Estimating the Impact of Ethanol on Corn Prices Using the Competitive

Storage Model” examines the impact of biofuel mandates on the prices of commodities used to

produce food. We built a model that can capture important attributes of commodity markets

and the mechanism by which mandates are enforced. US biofuel mandates are enforced using

a system of tradable permits, called RINs. RIN market dynamics are important because they

can be banked for future use. Rational expectations competitive storage models are best suited

to capture the dynamic behavior of commodity markets. Such a model is developed for corn

and RIN markets to estimate the impacts of alternative future ethanol mandate levels. The

model considers corn use for ethanol, storage and all other uses in each period, accounting for

two random variables: oil prices and corn yields. Borrowing and banking provisions of the

Renewable Fuels Standard (RFS) mandate are also integrated into the model. The impact of

mandates are estimated by comparing model solutions under two scenarios. The first scenario

assumes that EPA allows mandates to increase to 15 billion gallons, which is the cap on RFS

mandates that can be met with corn ethanol. The second scenario assumes that EPA keeps

mandates at approximately 10 percent of US gasoline consumption. At this level practically

all fuel in the United States will contain 10% ethanol, which is called E10. The impacts are

estimated with a new competitive storage model of RINs and corn. The sources of uncertainty

in the model are variable corn growing conditions which leads to ethanol supply uncertainty

and uncertain gasoline prices which cause ethanol demand uncertainty. The resulting stochastic

dynamic programming model is solved through the 2019 crop year using USDA projections of

corn demand along with trend yield adjustments. The solved model is used to simulate future

corn and RIN price distributions that show the impact of increasing mandates. Results indicate

that increasing mandates have rather modest impacts on future corn prices but large impacts

on RIN price distributions.

The third essay “Endogenous Price in a Dynamic Model for Agricultural Supply Analysis”

presents a new model of agricultural supply which combines Positive Mathematical Program-

ming (PMP) with the rational expectations storage model and compares methods to solve the

combined model. We first follow Mrel and Bucaram (2010) to calibrate a leontief-quadratic

model of agricultural supply to a certain allocation level and a set of supply elasticities. Then
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we combined the supply model with competitive storage model to endogenize the crop prices.

PMP is widely used in policy analysis but the model does not endogenize expected output

prices. On the other hand, competitive storage model endogenizes expected prices by assuming

futures prices formed by agents are realized expected prices given all optimal decisions about

storage, acreage and consumption. The combination of these two models will create a more

powerful tool for policy analysis. However, the multi-crop competitive storage model becomes

more difficult to solve using collocation method when the number of crop increases. In solv-

ing the model, we compare generalized stochastic simulation algorithm (GSSA) and the

Smolyak collocation method. We also consider approximations of different solution func-

tions such as storage rule approximation and expected price approximation. We use (1)

GSSA with storage rule approximation, (2) Smolyak collocation with storage rule ap-

proximation and (3) Smolyak collocation with parameterized expected price. The results

show that Smolyak collocation method performs better than GSSA considering computational

time and accuracy in solving the multi-crop storage model.
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CHAPTER 2. OPTIMAL CELLULOSIC ETHANOL PLANT SIZE

UNDER UNCERTAINTY

2.1 Introduction

Extensive research has been conducted on the optimal size of biofuel plants using determin-

istic models. The basic tradeoff is between economies of scale in per-unit processing cost and

diseconomies in feedstock costs due to transportation costs (Aden et al. (2002); Huang et al.

(2008); Rosburg (2012)). Most studies have found the optimal plant size by maximizing the net

present value or profits or by minimizing total costs. The optimal plant capacity is determined

by equating marginal benefit of increased capacity with the marginal cost of increasing feed-

stock costs (Nguyen et al. (1995); Kaylen et al. (1999); Leboreiro et al. (2010); Cameron et al.

(2006), Gan et al. (2010); Rosburg (2012)). Sensitivity analysis of how key factors affect the

choice of plant size is usually included. Factors that decrease biomass transportation costs (or

the distance that biomass must travel) or that decrease per-unit production costs increase the

optimal plant size (Nguyen et al. (1995); Leboreiro and Hilaly (2010); Huang et al. (2008), Gan

et al. (2010)). One factor that has not been extensively studied is the impact of uncertainty on

optimal plant size. For example, some of the first cellulosic biofuel plants will use corn stover

as a feedstock. But it is well documented that corn yields vary from year to year because of

variations in weather. When stover yields are low, feedstock will have to be brought from a

longer distance hence the cost of feedstock will increase. Similarly when stover yields are high,

feedstock costs may be low.

Stochastic models have been used to compare the impact of uncertainty on profits for

different plant sizes. For example, Dal-Mas et al. (2011) compares the expected net present

value for four different plant sizes under several scenarios of feedstock purchase costs and ethanol
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market prices. But the impact of uncertainty on optimal plant size has not been studied. It

is well known that an increase in uncertainty will impact optimal decisions if the uncertainty

impacts costs or profits nonlinearly (Rothschild and Stiglitz). Nonlinearities can be caused by

either nonlinear objective functions in static models or by nonlinearities due to the dynamic

nature of the problem. Two stage stochastic models are widely used in system or capacity

planning studies because investment decisions must be made before the level of the uncertain

variable that affects production levels is resolved (Bok et al. (1998); Santoso et al. (2005); Yang

(2010)). Hence, uncertainty in feedstock costs may have a significant impact on the optimal

plant size because of the dynamic nature of the problem.

This paper explores the impact of uncertainty on optimal plant size using a two period

model. The problem considered is that of an investor who wants to build an ethanol plant

using corn stover as the only feedstock. The first stage of the problem is to choose a plant

size. Assuming that the plant has the flexibility to purchase corn stover as needed after yield

is known, the second stage decision is to choose a production level conditional on the plant

size being chosen and on what corn stover yield turns out to be. When yield is abundant, the

production level is high. When biomass is short, the production level is low. The other way to

think about the story is that the plant decides the plant size in the first period and contracts

with farmers for the corresponding acreage of biomass without any contract fee in the first

period and any costs for not using all contracted acreages in the second period. The plant will

contract enough acreage to make the contracted acreages not a constraint in the second period.

Thus the plant also has the flexibility to get any amount of stover in the second period. If the

contract fee is positive, the story is completely different and beyond the scope of this paper.

The optimization problem is to maximize expected profits in the first stage taking into

account the second stage decision rule. The approach follows Turnovsky (1973) who used

general cost functions to model firms’ production plans under price uncertainty. In this paper

we use specific cost functions to investigate the firm’s optimal plant size under feed stock yield

uncertainty.

An additional contribution of this paper is that we consider two payment schemes for corn

stover procurement. Corn stover procurement cost includes farm gate cost and transportation
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cost. Payment scheme one (P1) considers the plant owner as a monopsony and who pays for

all transportation costs and a uniform price at the farm gate to all suppliers. Payment scheme

two (P2) assumes that the plant owner pays a uniform per ton price for all delivered stover at

the plant so that farmers pay for transportation costs. To our knowledge the impacts of these

two payment alternatives on optimal plant size have not been studied.

2.2 The Model

Suppose there is only one ethanol plant in a geographic region where corn stover is evenly

distributed. The ethanol plant with capacity Q that limits the gallons of ethanol can be

produced in a year and a production level V which is the actual amount of ethanol produced

to maximize profit conditional on a realized per acre yield. Assume that the plant can get the

amount of stover needed after observing stover yield and ethanol price. The market price for

ethanol is exogenously given and denoted by pe. Therefore peV is revenue generated per gallon

of ethanol. Assume the conversion rate of corn stover is fixed at Ye, so V gallons of ethanol

is produced by V
Ye

tons of corn stover. Cost for the plant has two components: feedstock

procurement cost (FPC) and production cost (PC).

Considering the plant’s problem under uncertainty, the risk neutral ethanol plant investor

wishes to maximize expected profits from building a biorefinery with corn stover as the only

biomass feedstock. Plant capacity cannot be changed once the plant is built and the ethanol

refinery wishes to maximize profits from producing ethanol given plant capacity. The timeline

of the decision making is illustrated in figure 1.

In period 1, plant capacity is chosen. Per acre yield of corn stover and output price are

revealed at the beginning of period 2, and then the optimal production level and the capture

radius is chosen under fixed capacity. Assume that the fraction of land devoted to stover

that will be supplied to the plant is constant. The plant collects all the available biomass in

the circular region of the optimal capture radius. The two period optimization problems can

be solved using backward induction. The second period problem is first solved by choosing

the production level given plant capacity and corn stover yield, then the investor makes the

optimizing first period capacity decision by taking into account all ex post possibilities. The
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ex post model follows Huang et. al(2009), Leboreiro(2010, 2013), Gan(2010), Rosberg(2012)

with modifications for stochastic considerations.

Figure 2.1: 2 periods

2.2.1 Feedstock Procurement Cost

Feedstock procurement cost (FPC) includes all the costs that occur before stover arrives

at the plant gate. Biomass needs to be bought from farmers in the collection region, stored in

storage depots and transported to the plant. Thus we assume the total feedstock procurement

cost includes farm gate cost (FGC), storage cost (S) and transportation cost (TC) (Leboreiro

and Hilaly (2010), Rosburg (2012)). Transportation costs will vary across farmers according to

how far they are away from the plant. The storage cost is constant per ton of stover collected.

The farm gate cost is defined as the minimum selling price of stover at the farm gate. It will

be positive because leaving corn stover in a field reduces soil erosion, maintains soil carbon, and

restores nutrients. Thus its removal incurs costs. In addition, stover has to be harvested, baled

and hauled to the edge of the field. Assume that the total farm gate cost includes nutrient

replacement cost and corn stover collection cost. Denote the per ton farm gate cost as cf .

Consider there are two payment schemes for FPC. Under the first payment scheme, the plant

is assumed to be a price-discriminating monopsony. The plant owner pays the transportation

cost and storage cost while all farmers receive the same price per ton of feedstock. The net cost

of feedstock to the plant owner varies by farmers according to the distance between each farm

and the plant. Thus the farmers close to the plant are not able to capture transportation-related

rents.

Under the other FPC payment scheme, the plant owner lists a total feedstock procurement

price excluding storage cost to all stover suppliers who pay transportation costs themselves.
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Because all farmers would like to supply corn stover if the listed price can at least cover the

total transportation cost plus farm gate cost, the listed price equals to the total feedstock

procurement cost for the stover supplier farthest from the plant. The total price paid by the

plant is constant across all farmers so that the nearby farmers receive a higher net price (net of

transportation cost) than farmers farther from the plant. Thus farmers capture location rents

in this case. Because the price paid by the plant under the second scheme must equal farm

gate cost plus transportation cost of the farthest away farmer, average feedstock cost to the

plant from the second payment scheme will be higher than under the first payment scheme.

2.2.1.1 Plant Owner Pays transportation Cost

Total transportation cost paid by the plant is determined by the amount of corn stover

delivered to the plant, the per unit transportation cost, and the distance the corn stover must

travel. Following Overend (1982), Nguyen and Prince (1995)’s approach, suppose the plant

is located at the center of a circular collection region, which has a size that adjusts to meet

the annual corn stover demand with no adjustment cost. Annual demand equals total yearly

production. Consider a production of V gallons a year. Let r be the radius of the circular

region, f is the fraction of land around the plant devoted to feedstock production multiplied

by the fraction of stover supplied by farmers. Assume the willingness to supply is constant for

any price level. Define y as per acre yield of corn stover that is measured in tons per acre.

Then the collection radius can be calculated from V
Ye

= πr2yf , so that

r =

√
V

Yeπyf
(2.1)

Assuming that all transportation activities are carried out by semi-truck with flat bed. The

total amount of stover at distance between x and (x − dx) from the plant is 2πxyfdx. The

number of the trips for hauling the product from distance x to plant is the total amount of

corn stover divided by the load per truck, which is 2 · (2πyfdx/N) while N is the load per

truck. We consider round-trip transportation cost (Leboreiro and Hilaly (2010), Morey et. al.

(2010)), thus there is a 2 in front of the formula. Per mile shipping cost is ctN . The per trip

cost is xctN . Considering the actual distance is not a straight-line, then the per trip cost is
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τctNx. The total variable transportation cost from shipping stover at distance between x and

(x− dx) from the plant is given by the following integral:

TC =

∫ r

0
2(

2πxyf

N
)τctNxdx =

4πτctNdyr
3

3N
(2.2)

Substituting V
Ye

= πr2dy, the total variable transportation cost of gathering corn stover in

the circular region can be rewritten as:

TC =
4τctNr

3N

V

Ye
(2.3)

ctN can also be seen as the per mile per load transportation cost. ctN
N is the transportation cost

per ton per mile. We use ct to denote the per ton per mile transportation cost in the rest of

the paper. Comparing with the variable transportation cost calculated from one-way trip by

Nguyen and Prince (1995), our transportation cost is doubled. Substituting (1) into (3) yields

a form without the distance variable r:

TC =
4

3
τct

1√
πyd

(
V

Ye
)
3
2 (2.4)

This is the variable transportation cost required to deliver tons of corn stover to the plant

which under the payment scheme is paid for by the plant owner. As the amount of corn stover

processed increases, per ton DVC increases at a decreasing rate. The DVC increases because an

additional unit of corn stover needed by the plant has to be hauled from far away. Also, DVC

decreases when corn stover is abundant because the plant can find any given amount of stover

closer to the plant than when yields are low. Consider per ton fixed distance cost (loading and

unloading cost) is h. Also we assume all stover are stored on farm, stacked as a pyramid shape

with tarp on the top (Wright and Brown (2011)). Storage cost is assumed to be constant per

ton corn stover with representing per ton storage cost. Total feedstock procurement cost is

FPC = TC + S + FGC = (
4τctr

3
+ h+ s+ cf )

V

Ye
=

4τct
3

1√
πyf

(
V

Ye
)
3
2 + (h+ s+ cf )

V

Ye
(2.5)
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2.2.1.2 Farmers Pay Transportation Cost

Now assume that the plant lists a corn stover procurement price at the plant that is paid

to all suppliers who deliver corn stover to the plant. In this scheme, farmers are responsible

for paying transportation costs. The price that is paid for stover by the plant will equal the

farm gate price plus the cost of transporting corn stover from the farthest point of the draw

area. Per ton shipping cost for corn stover per ton to the biorefinery at the edge of the circular

region with radius r is 2rct and the per ton farm gate cost is same as P1, so total procurement

cost for all corn stover ( V = πr2yd ) in the region is:

FPC = TC + S + FGC = (2rct + s+ cf )
V

Ye
= 2rct

1√
πyd

(
V

Ye
)
3
2 + (h+ s+ cf )

V

Ye
(2.6)

Comparing the two payment schemes, procurement cost is higher under the second scheme

than under the first scheme. Notice that the variable portion of transportation feedstock costs

when the plant owner pays transportation costs is one-third lower than when the plant posts a

price at the plant for all delivered stover. Because of this constant relationship we first solve for

the optimal plant size when the plant owner pays transportation cost and then show how a 50

percent increase in ct affects plant size. The resulting change in plant size from this 50 percent

increase in ct measures the impact from moving from a plant owner paying transportation costs

to farmers paying transportation costs1.

2.2.2 Production Cost

Cellulosic biofuel production cost (PC) includes capital cost (PCc) and operating cost

(PCo). Capital cost depends on biofuel plant capacity and exhibits economies of scale. Total

capacity cost for equipment in process industry has the following characteristics (Aden et. al.

(2002), Huang et. al. (2008), Leboreiro et. al. (2010), Gan et. al.(2010), Rosburg(2012)):

PCc = cc(
Q

Q0
)α, 0 < α < 1 (2.7)

1The transportation cost could be overestimated for the second payment scheme because the supplied stover
per square mile is assumed to be constant in the analysis. In reality, the farms which located nearer to the plant
keep more location rents and are willing to supply more stover. In that case, increases with smaller distance
between farms and the plant. Thus the capture region is smaller and transportation cost decreases.
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cc is the total capital cost for plant size Q0 and the new capital cost for plant with capacity

Q is determined by the exponential scaling expression above. α is the scaling exponent and

is strictly less than 1, implying decreasing marginal capital cost. The marginal capital cost

function is

dPCc
dQ

=
cc
Qα0

αQα−1 (2.8)

Assume that operating cost doesn’t exhibit economies of scale, goes to infinity at capacity

level and the per gallon operating cost is approximately constant below capacity level. A

possible variable production cost expression could be:

PCo = co
V

(Q− V )β
, β > 0 (2.9)

co and β are the variable production cost factors. Strictly positive β implies that the

denominator goes to zero at capacity level and total operating cost goes to infinity. Thus

production could approach but never reach capacity. We assume β is small enough to make

(Q − V )β ≈ 1 when production is below capacity, then PCo ≈ coV where co represents a

constant per gallon operating cost. Therefore, the total production cost is:

PC = cc(
Q

Q0
)α + co

V

(Q− V )β
(2.10)

2.2.3 Optimal Plant Size When Plant Owner Pays Transportation

In the following model sections, we’ll only consider the optimal plant size decision when

plant owner pays transportation cost (payment scheme 1). The difference in optimal plant sizes

for the two payment schemes will be shown in the simulation results. A two stage decisions

model is built in the section and optimal decision making under yield certainty is analyzed

in section 2.3.1. The optimal capacity is found to be determined by economies of scale in

fixed production cost and diseconomies of scale in transportation cost (equation (15)). In

section 2.4.1, the model is extended for stochastic yield and the proposition for decisions under
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increasing risk developed by Roschild and Stigliz is used for comparing optimal capacity under

certainty and uncertainty.

In the second period, the plant has the flexibility to purchase corn stover under certain

capacity when per acre yield is known and makes a decision on the optimal production level.

The profit maximization problem is:

Max
V

Π = PeV − FPC − PC (2.11)

Max
V

Π = peV − (
4τct

3

1√
πyd

(
V

Ye
)
3
2 + (h+ s+ cf )

V

Ye
)− (cc(

Q

Q0
)α + co

V

(Q− V )β
) (2.12)

pe is per gallon price of cellulosic ethanol. Suppose pe is at least higher than marginal

total cost at an infinitesimal quantity, then the second period first-order condition for optimal

production given a plant capacity (V ∗(Q) ) is

pe − (
2τctV

∗(Q)
1
2

√
Yeπyd

+ h+ s+ cf )
1

Ye
− (

co
(Q− V ∗(Q))β

+
cpβV

∗(Q)

(Q− V ∗(Q))β+1
) = 0 (2.13)

Marginal cost is monotonically increasing in V , hence (13) determines a unique level of

production. Because V ∗(Q) is chosen after y and pe are observed, variability in y implies

variability in V ∗(Q).

2.2.3.1 Optimal Capacity Under Yield Certainty

In the first period, the plant makes its capacity decision taking into account the second

period decision problem. Under yield certainty, optimal capacity and the optimal production

in second period have the following relationship according to envelope theorem:

ΠQ = −ccα
Qα0

Q∗α−1 +
coV

∗(Q∗)β

(Q∗ − V ∗(Q∗))β+1
= 0 (2.14)

Combining (3.14) and (2.14), we can write total marginal cost in terms of only optimal

capacity Q∗. Optimal capacity is determined by:
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pe − co −
ccα

Qα0
Q∗α−1 = cf + s+ (

2πct√
Yeπyd

√
(

ccαQ∗α−1

ccαQ∗α−1 + coβQα0
)Q∗ + h)

1

Ye
(2.15)

The LHS of the first order condition (3.16) is the net marginal revenue of producing ethanol

from corn stover accounting for the cost of converting corn stover to ethanol. The RHS of (3.16)

is the marginal cost of acquiring corn stover, including per ton farm gate cost, per ton storage

cost and the marginal cost of transporting corn stover. The expression under the square root

sign is the optimal production for the given capacity (( ccαQ∗α−1

ccαQ∗α−1+coβQα0
)Q∗ = V ∗(Q)). The

optimal plant size is found by equating the net marginal returns to production to the marginal

cost of corn stover. With economies of scale, a larger plant size increases net marginal returns

to production. But increased plant size also increases the marginal cost of stover because

the marginal cost of transportation increases. Thus the solution to (3.16) defines the optimal

capacity.

Under certainty, optimal capacity increases with feedstock yields and output price (∂Q
∗

∂y > 0

, ∂Q∗

∂p > 0). An increase in per acre yield causes a decline in marginal transportation cost

because more feedstock is available closer to the plant. Higher output price leads to higher per

ton revenue generated and results in a larger optimal capacity.

Increases in other parameters such as economies of scale (α−β), per ton per mile transporta-

tion cost (ct), production cost factor (co) all lead to higher total marginal cost and therefore

lead to a lower optimal capacity. This means that the optimal plant size is smaller when the

farmer pays transportation costs than when the plant pays transportations costs.

2.2.3.2 Optimal Capacity Under Uncertainty

We now consider the impact of uncertain corn stover yield, specifically, how a mean pre-

serving spread in yield affects optimal capacity. Let per-acre yield y have a density function

f(y) and cumulative distribution function F (y) with lower bound yL and upper bound yH .

The second period decision follows equation (3.14) when yield is known. Taking the ex-post

adjustment V ∗ into the first period, the expected profit for the biorefinery is given by
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Max
Q

EΠ =

∫
y

Π(Q, y)dF (y) =

∫
y

(peV
∗(Q, y)− (

4πct
3

1√
πyd

(
V ∗(Q, y)

Ye
)
3
2 + (h+ s+ cf )

V ∗(Q, y)

Ye
)

(2.16)

−(cc(
Q

Q0
)α + co

V ∗(Q, y)

(Q− V ∗(Q, y))β
))dF (y)

The optimal capacity under uncertainty Q̃∗must satisfy

∫
y

(−ccα
Qα0

Q∗α−1 +
coV

∗(Q∗)β

(Q∗ − V ∗(Q∗))β+1
)dF (y) = EΠQ(Q̃∗, y) = 0 (2.17)

When comparing the optimal decision under certainty and uncertainty, it’s impossible to get

an answer from the first order conditions given by equation (3.16) and equation (2.17). The

proposition given by Rothchild and Stiglitz for analyzing the economic consequences under

increasing risk is used to see the impacts of yield to the optimal plant capacity.

Where Q∗ is a unique solution to (4.19) in the neighborhood of Q∗, ΠQ(Q, y) is monotone

decreasing in Q. If ΠQ(Q, y) is concave in y, a mean preserving spread in (an increase in

riskiness) will decrease Q∗. When ΠQ(Q, y) is convex y, a mean preserving spread in increases

Q∗. The effect of increaing in risk is ambiguous when ΠQ(Q, y) is neither convex nor concave

(Rothschild and Stiglitz).

To see why convex marginal profit leads to a larger plant under yield uncertainty than

under certainty, consider an ethanol producer who faces yield uncertainty and is considering

building a plant size when yield is nonstochastic at its mean level E(y). The optimal capacity

under certainty corresponds to the mean yield is Q∗. Building a unit greater than Q∗ leads

to higher profits when yield is higher than average but lower profits when yield is less than

average. Convex marginal profit means that the expected marginal profit of capacity (ΠQ) is

greater than zero at the capacity level Q∗, which implies that an additional increase in capacity

would increase expected profits. The capacity increases until marginal expected profits falls

to zero. Thus, the optimal capacity under uncertainty is greater than that under certainty.

Similarly, if marginal profit is concave in yield, then expected marginal profit due to a change
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in capacity is negative when evaluated at Q∗, hence yield uncertainty leads to a smaller plant

size.

The Rothschild-Stiglitz result indicates that a sufficient condition for signing the effects of

yield uncertainty on plant size is to check if the ΠQ(Q, y) is concave or convex in y. The second

derivative of ΠQ(Q, y) with respect to y is:

∂2ΠQ

∂y2︸ ︷︷ ︸
?

= (
∂V

∂y
)2[

(1 + β)(Q− V (Q))β

(Q− V (Q))2(β+1)
+

1 + β + (1 + β)(2 + β)(Q− V (Q))β+1V (Q)

(Q− V (Q))2(β+2)
]︸ ︷︷ ︸

+

(2.18)

+
∂2V

∂y2︸︷︷︸
?

[
1

(Q− V (Q))β+1
+

(1 + β)V (Q)

(Q− V (Q))β+2
]︸ ︷︷ ︸

+

Because ∂V ∗

∂y is positive ∂2V ∗

∂y2
is indeterminate. The sign of

∂2ΠQ
∂y2

is indeterminate. The

mathematical proofs for the indeterminate sign of
∂2ΠQ
∂y2

is provided in the appendix. Simu-

lations are used to examine the conditions under which plant size increases or decreases with

yield uncertainty.

2.3 Simulation

In this section, we first illustrate the computational strategies of deriving the optimal plant

size under uncertainty and certainty in the baseline case and then we show the parameter values

we are using in the simulation. The estimates for the parameters are all found in other research

papers or estimated using USDA data.

In the baseline case under yield and ethanol price uncertainty, we discretize the possible

continuous optimal capacity space from 20 million gallon to 200million gallon into 300 points.

For each capacity value belonging to the 300 points, we find expected profits given the capacity.

The capacity that gives the highest expected profits is the optimal capacity that we find. To

obtain the expected profits for a certain capacity, we first generate the combinations of yield and

price values together with the corresponding probability using Gaussian quadrature method.

For each combination of yield and price revealed in the second period, the first order condition

in equation (3.14) is used to get the optimal production. Then we take each optimal production
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back into the first period and calculate the profit according to equation (2.12). The expected

profit for the certain capacity is calculated by multiplying each profit by its corresponding

probability.

Assume that the per acre yield of corn stover follows a beta distribution to capture the

uncertainty in yields. Because one dry ton of grain equals one dry ton of stover, the corn

stover yield can be captured as the beta distribution using Iowa corn yields data from 1970 to

2012 from the website of USDA NASS. Using a linear trend, the corn yield time series data

are detrended to 2007 technology because the biomass conversion technology is in 2007. The

maximum yield is set to be 1.2 of the maximum yield in the detrended data. ymax is the

maximum yield and ymax = 244 bushels per acre. Minimum yield is assumed to be zero. Fit

the data to a beta distribution yields: y ∼ beta(αy, βy)αy = 21.9206, βy = 10.6065. Under

certainty, the expected yield value is used. The expected yield equals the mean of the above

beta distribution which is E(y) =
244αy
αy+βy

= 164 bushels/acre = 4.6 tons/acre.

Function integration in two dimensional spaces is approximated by using Gaussian quadra-

ture method. Matlab code by Miranda and Fackler is used for generating quadrature nodes

and weights to approxiate a joint distribution while yield follows beta distribution and gaso-

line prices follow a lognormal distribution. Since corn stover yield and gasoline prices are

uncorrelated, there is no correlation between the yield and gasoline distributions. We select 3

quadrature nodes from each distribution.

Assume that the harvested corn stover moisture content is 15% (Morey (2010)). The total

fraction of land devoted to stover production near the cellulosic ethanol plant is assumed to

be 0.6 (Wright and Brown (2007)). The percentage of corn stover that farmers are willing

to supply varies from 0.1 to 0.37 in literature (Gan and Smith (2011), Leboreiro and Hilaly

(2013), Huang et. al. (2009)). In this paper, we assume 30% of corn stover are supplied to the

biorefinery.

The willingness to sell corn stover at the farm gate is determined by nutrient replacement

cost and stover collection cost. The nutrient removal per ton of feedstock has been estimated to

be about 20 lb of N, 5.9 lb P2O5 and 25.0 lb of K2O2. 2011 year fertilizer cprices are used and

2Nutrient removal per ton of corn stover data is from Iowa state university extension
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indexed to 2007 year price3. With a price of $0.377 per lb N, $0.45 per lb P2O5 and $0.33 per

lb K2O, per ton nutrient removal price would be $7.50 for N, $2.65 for P2O5, $8.25 for K2O.

The total per ton corn stover nutrient replacement cost is $18.40. Beside nutrition replacement

cost, baling and staging cost per ton of corn stover are assumed to be $24.33 (Huang et al.

(2009)). Then the total farm gate cost is $42.73 per ton.

Different ways for storage result in different cost. The assumption for storage follows

Thompson and Tyner (2011). It is assumed that the stover is stored on farm for up to 12

months and the bales are stacked in a pyramid formation with a tarp on the top. The per

ton storage cost at 15% moisture is $14.74 according to the estimate by Thompson and Tyner

(2011). The loading and unloading cost is $6.9 per dry ton (Huang (2009)). The variable cost

of transporting corn stover depends on the price of diesel fuel. Transportation cost per dry ton

per mile in the baseline case is assumed to be 0.71 as in Brown and Wright (2007) and Rosburg

(2012). Tortuosity factor is 1.5 (Brown and Wright (2007)).

Production cost parameters are estimated using NREL Aspen Model which is described

by Humbird et al. (2011). Dilute Acid Pretreatment with Enzymatic Hydrolysis and Co-

Fermentation is used in the ethanol production process in this report. The expression for

variable capital cost is co
V

(Q−V )β
where (Q− V )β ≈ 1 when V 6= Q. Thus it’s reasonable to set

β = 0.0001 because (Q−V )β = 1.002 for Q = 700 million and V = 0. co can be approximated as

per gallon constant operating cost including the enzymes cost and non-enzyme conversion cost.

Enzymes cost is $0.34/gal and non-enzyme conversion cost is $1.08/gal, thus co is $1.42/gal.

For the fixed production cost part, the total capital cost from the Aspen model is $422.5 million

for an ethanol plant with a production level of 61 million gallon per year. Amortized the total

capital cost over 20 years with 8% interest rate (Wright and Brown (2007)), per year payment

cc is $43 million. The scale factor of fixed cost α ranges from 0.6 to 0.9 and is assumed to be

constant for all capacity levels in literatures (Aden et al (2002); Huang et al. (2008); Gan et

al. (2010); Leboreiro (2011)). Here we assume the scale factor is 0.75 in the baseline model.

http://www.extension.org/pages/26618/corn-stover-for-biofuel-production
3By using fertilizer price index from USDA. http://www.ers.usda.gov/data-products/fertilizer-use-and-

price.aspx
4The per ton storage cost is indexed to 2007 value by using mean hourly wage of agricultural equipment

operators from Bureau of Labor Statistics.
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Optimal plant

size under

certainty

Optimal production Radius Per gallon

feedstock cost

Per gallon

production

cost

48.7 mgy 48.69 mgy 21 miles 1.1893 (2007$) 2.1646 (2007$)

Table 2.1: Optimal plant size under certainty and related statistics

Ethanol yield is 79.0 gallons per year in the Aspen model.

Cellulosic ethanol price has a relationship with gasoline price according to the following

formula:

pe = 0.667pg + tax credit (2.19)

While the conventional ethanol tax credit has already expired, the cellulosic ethanol tax is

extended and set to be $1.01 per gallon. Using the present RBOB gasoline price value, cellulosic

ethanol mean price cannot support a positive operating margin of a cellulosic ethanol plant

for the baseline data parameters for all plant capacity levels. In order to make the baseline

case in our simulation for a breakeven plant at maximized capacity, a mean value of gasoline

price equal to $3.515/gallon (in 2007 dollar) is used. The variance of lognormal distribution

is assumed to be the same as the standard deviation for monthly New York harbor RBOB

gasoline price data from 2011 to 2013. The standard deviation is 0.22. Under certainty, the

gasoline price is $3.515/gallon.

2.4 Results

2.4.1 Baseline Case Optimal Plant Sizes for Plant Pay Transportation Cost

Optimal plant size is 48.7 million gallons per year for baseline case under certainty. The

optimal production is almost the same as the optimal capacity. Corn stover collection radius for

such a plant is 21 miles. Simulated per gallon feedstock procurement cost including transporta-

tion cost, storage cost and payment for stover is approximately $1.1893. Per gallon production

cost including both amortized payment for capital investment cost and variable production cost

is $2.1646.
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Plant capacity is optimized at 47.5 million gallons per year under both yield and price

uncertainties. An increase in corn stover yield increases optimal production towards capacity

(47.5 million gallons per year) and decreases optimal biomass collection radius. Figure 2 shows

the second period decision making under different yields and gasoline prices for the 47.5 million

gallons per year plant. For all gasoline prices ranging from 2.2 $/gallon to 4 $/gallon, optimal

productions increase with higher yield values. If the gasoline price is at the mean value (3.515

$/gallon), optimal productions increase to almost capacity level when yield is less than 2 tons

per acre. For all yield values, optimal productions increase with higher gasoline price values.

When yield is at its mean value (4.6 tons per acre), optimal productions reach almost capacity

level when gasoline price is less than 3 $/gallon.

Figure 3 shows the capture radiuses with different yields and gasoline prices in the ex post

decision making. When yield goes high, capture region shrinks for any gasoline price. At mean

gasoline price, the capture radius shifts from 30 miles to 10 miles when the yield increases from

1ton per acre to 6 tons per acre. The capture radius goes up when gasoline price increases for

any yield value. At mean yield, capture radius rises from 0 to 21 miles when gasoline price

increases from 2.2 $/gallon to 4 $/gallon.

Figure 2.2: optimal production with different yields and gasoline prices for 47.5 mgy plant
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Figure 2.3: optimal radiuses with uncertain factors for 47.5 mgy plant

2.4.2 Sensitivity Analysis

The sensitivity of optimal plant capacity under certainty and uncertainty to a change in

scale factor, variable transportation cost and available land is shown in Figure 4. All black

lines and red lines shown in figure 4 show the relationship between optimal plant capacities

and different factors under certainty and uncertainty respectively.



www.manaraa.com

21

Figure 2.4: Sensitivity to scale factor of optimal plant size (mgy) under certainty and uncer-

tainty

Figure 2.5: Sensitivity to available land of optimal plant size (mgy) under certainty and uncer-

tainty



www.manaraa.com

22

Figure 2.6: Sensitivity to transportation cost of optimal plant size (mgy) under certainty and

uncertainty

Economies of scale

The optimal plant size decreases with scale factor (α) as shown in figure 4(a). Higher α

increases total capital cost for all capacity levels and the optimal plant size decreases. α = 0.75

is assumed in the baseline and we get the optimal plant capacity values for α varies from 0.65 to

0.8. Optimal plant capacity decreases from 75 million gallons per year to 40 million gallons per

year when scale factor rises from 0.65 to 0.8. Optimal capacity under uncertainty also decreases

with higher scale factor value and the difference between optimal capacity under certainty and

uncertainty is only 1 to 2 million gallons per year (figure 4(1)).

Land fraction devoted to stover

The fraction of land devoted to corn stover around a plant has an impact on the variable

transportation cost. The fraction of land for biomass differs in different regions. It is assumed

that 30% of the land is available for stover production in the baseline case. More land devoted

to corn stover has the same effect as a higher corn stover yield. Thus higher available land

leads to a bigger plant. Optimal plant capacity under certainty and uncertainty increases

almost linearly as available land rises as shown by figure 4(2).
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Transportation cost

We test the variable transportation cost from 0.45 dt−1mile−1 to 0.8 dt−1mile−1 when our

baseline value is 0.71 dt−1mile−1. The optimal plant capacity goes down considerably with

variable transportation cost as shown in figure 4(c) especially when cost is small. Increase

in variable transportation cost from 0.45 dt−1mile−1 to 0.8 dt−1mile−1 decreases the optimal

capacity size by more than 170 million gallons per year. The plant capacity under uncertainty is

still only 1 or 2 million gallons per year smaller than that under certainty for all transportation

cost values. In all cases examined above, all cost factors changes the optimal plant capacity both

under certainty and uncertainty significantly. However, the optimal capacities under certainty

are almost the same as that under uncertainty in all sensitivity analysis.

2.4.3 Comparing Plant Size by Different Transportation Payment Schemes

The sensitivity of optimal plant size to transportation costs implies that the optimal plant

size will also be greatly impacted by whether the plant owner pays transportation costs or

whether the farmer pays. Recall that the variable portion of transportation cost when the

farmer pays transportation costs is 50 percent higher than when the plant owner pays trans-

portation costs. This means that the impact on the optimal plant size from moving from a

system whereby the plant owner pays transportation cost to a system whereby the farmer pays

can be measured by comparing the optimal plant size when ct = $0.50dt−1mile−1 to the opti-

mal plant size when ct = $0.75 dt−1mile−1in Figure 4(3). When ct = $0.50 dt−1mile−1and the

transportation payment plan changing from plant pays to a system whereby the farmer pays,

the optimal plant size decreases dramatically. Figure 4(3) shows that P2’s plant size shrinks

to less than one third of P1’s size, implying that plant size is much smaller when farmers pay

for the transportation cost. When plant manages the feedstock transportation itself, the trans-

portation cost is cheaper, resulting in a bigger optimal capacity. As explained in footnote 1,

the plant size under P2 is overestimated if changes in farmers’ willingness to supply are taken

into account.
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2.5 Conclusions

By maximizing the profit and expected profit of cellulosic ethanol production, we develop

a framework for determining optimal biorefinery plant capacity under both certainty and un-

certainty, which in turn leads to the derivation of the maximum profit possible plant. Data

from the published literature and USDA data are used to determine the optimal biorefinery

capacity under both certainty and uncertainty.

Optimized biorefinery plant capacity under certainty is found to be 48.7 million gallons per

year in the baseline case. The optimal plant size is 47.5 million gallons per year in baseline case

when considering uncertain stover yields and gasoline prices. For a plant under uncertainty,

its optimal production goes up with a rise in per gallon gasoline price or per acre stover yield.

The optimal stover supply radius decreases with an increase in stover yield and increases with

a rise in per gallon gasoline price. The optimal capacity under both certainty and uncertainty

increases with a rise in land fraction distributed to biomass or a fall in feedstock transportation

cost, plant scale factor. The sensitivity analysis shows that optimal capacities are almost the

same under certainty and uncertainty for all cases. We also evaluate the impact of two corn

stover payment schemes on the optimal biorefinery plant capacity. The optimized plant size

under certainty or uncertainty decreases when shifting from plant pays the transportation cost

scheme to farmers pay the transportation cost.

The results have several important implications for bioenergy development. The results

show that only mean values for stover yield and gasoline price need to be considered when

planning the plant size. Other than the findings by previous research that optimal plant size can

be affected by different factors such as plant scale factor and transportation cost parameters,

optimal plant size is also impacted by transportation payment plans. Hence, decisions on

plant capacity and the corresponding corn stover supply radius should be made carefully with

consideration of corn stover procurement, biomass conversion, mean values for stover yield and

gasoline price, per gallon revenue and different stover payment schemes.
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2.6 Appendix

1. Prove that second order sufficient condition for optimal capacity under certainty is

satisfied.

∂2Π

∂Q2
(Q∗) = −ccα

Qα0
(α−1)Q∗α−2− τct

Ye
√
Yeπyd

(
ccαQ

∗α

ccαQ∗α + coβQα0
)−1/2 c

2
cα

2Q∗2α−2 + cccoβα
2Qα0Q

∗α−1

(ccαQ∗α−1 + coβQα0 )2
< 0

(2.20)

Thus the capacity is optimized at Q∗.

2. Prove that the signs of
∂2ΠQ
∂y2

and
∂2ΠQ
∂p2e

are undetermined.

∂2ΠQ

∂p2
e︸ ︷︷ ︸
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(Q∗ − V ∗(Q∗))2(β+1)
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(Q∗ − V ∗(Q∗))2(β+2)
]︸ ︷︷ ︸

+

+
∂2V ∗

∂p2
e︸ ︷︷ ︸

?

[
1

(Q∗ − V ∗(Q∗))β+1
+

(1 + β)V ∗(Q∗)

(Q∗ − V ∗(Q∗))β+2
]︸ ︷︷ ︸

+

(2.21)

∂2V ∗

∂p2
e

= (
∂V

∂pe
)2[

τct
2Y 2

e

1√
Yeπyd

V −3/2 −
βco(

1
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(Q∗−V ∗(Q∗))β+3 )

τct
Ye
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Yeπyd

V −1/2 + coβ
1

(Q∗−V ∗(Q∗))β+1 + V (1+β)
(Q∗−V ∗(Q∗))β+2

]

︸ ︷︷ ︸
?but negative for all possible parameter values

(2.22)
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(Q− V (Q))2(β+2)
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+

(2.23)

+
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1

(Q− V (Q))β+1
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(Q− V (Q))β+2
]︸ ︷︷ ︸

+
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All of the signs are indeterminate.

4. Prove that optimal capacity is increasing in per acre yield and output price.

To get ∂Q
∂y from the implicit function

pe − co −
ccα

Qα0
Q∗α−1 = cf + s+ (

2τct√
Yeπyd

√
(

ccαQ∗α−1

ccαQ∗α−1 + coβQα0
)Q∗ + h)

1

Ye
(2.26)

Take derivative w.r.t on both sides yields:

2πct

Ye
√
Yeπdy

√
ccα2Q∗α−1(ccαQ∗α−1 + coβQα0 )− c2

cα
2Q∗(2α−2)(α− 1)
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(
∂Q∗

∂y
) +

ccα

Qα0
(α− 1)Q∗(α−2)∂Q

∗

∂y

=
τcty

−3/2

Ye
√
Yeπdy

√
ccαQ∗α

ccαQ∗α−1 + coβQα0
(2.27)

Under square root,
ccα2Q∗α−1(ccαQ∗α−1+coβQα0 )−c2cα2Q∗(2α−2)(α−1)

(ccαQ∗α−1+coβQα0 )2
> 0 because the scale factor

α < 1, ∂Q∗

∂y has to be greater than 0 to make the whole thing under square root positive. Take

derivative w.r.t on both sides yields:

2πct

Ye
√
Yeπdy

√
ccα2Q∗α−1(ccαQ∗α−1 + coβQα0 )− c2

cα
2Q∗(2α−2)(α− 1)

(ccαQ∗α−1 + coβQα0 )2
(
∂Q∗

∂pe
)+
ccα

Qα0
(α−1)Q∗(α−2)∂Q

∗

∂pe
= 1
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For the same reason, ∂Q∗

∂pe
> 0.
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CHAPTER 3. ESTIMATING THE IMPACT OF ETHANOL MANDATE

ON CORN PRICES USING THE COMPETITIVE STORAGE MODEL

3.1 Introduction

The impact of increasing biofuel consumption has been the subject of intense study over the

last few years because of the concern that policies that support biofuels may have unintended

impacts on impact food prices (World Bank), greenhouse gas emissions (Rajagopal and Plevin

(2013)), or fuel prices (CBO (2014)). This paper presents a new way to model biofuel and

feedstock markets that explicitly connects the US policy mechanism used to support biofuels

with the market for corn–the world’s most commonly used biofuel feedstock, and the commodity

that is usually associated with excess greenhouse gas emission and higher food prices. Biofuel

mandates in the Renewable Fuels Standard (RFS) is the primary policy tool that supports

biofuel consumption in the United States so attention has recently focused on the impact

of these mandates on biofuel production. The compliance mechanism for the RFS is that

fuel producers and importers must obtain sufficient Renewable Identification Numbers (RINs)

to show that they have met their biofuel obligations. RINs are produced when biofuels are

produced. Their 38-digits facilitate traceability of each biofuel batch. Obligated parties obtain

RINs either by buying biofuel from producers or by buying RINs in the market. Optimizing

firms will choose to buy RINs if the price of RINs is less than their net cost of buying and

blending biofuels that have the RINs attached. The net cost of buying and blending biofuels

is the difference between the market price of the biofuel and its value in the fuel market. In

theory, the price of RINs in the market will reflect this net cost. When RFS mandates push

biofuel beyond the level that market forces alone would support, then the price of RINs will

increase. RIN prices will approach zero when mandates are lower than the quantity that market
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forces support. Thus RIN prices provide a market measure of the impact of the RFS on biofuel

consumption and production as well as providing a measure of marginal compliance costs.

To lower the cost of complying with biofuel mandates the Environmental Protection Agency

(EPA) allows RINs to be banked or borrowed. Thus the price of RINs will not only reflect

current net costs of buying and blending biofuels but also anticipated future net costs. Rubin

(1996) developed temporal arbitrage conditions for tradable environmental permits that can be

banked or borrowed. McPhail (2010) applied these conditions to the RIN market and solved

the optimal conditions for how many RINs to store based on no-arbitrage profit conditions.

However, she ignores the 20

The contribution of this paper is estimation of the future impact of RFS ethanol mandates

using a rational expectations competitive storage model. The impact of mandates are estimated

by comparing model solutions under two scenarios. The first scenario assumes that EPA allows

mandates to increase to 15 billion gallons, which is the cap on RFS mandates that can be met

with corn ethanol. The second scenario assumes that EPA keeps mandates at approximately

10 percent of US gasoline consumption. At this level practically all fuel in the United States

will contain 10

3.2 Model

Our model consists of perfectly competitive markets, an obligated party who produces

gasoline under constant cost conditions and who blends ethanol and gasoline to make fuel, a

representative profit-maximizing corn farmer with an upward sloping supply curve that depends

on the expected future price of corn, and a representative biofuel producer who combines corn

and other inputs to produce ethanol. Each year the farmer chooses acreage based on next

year’s expected corn price. Harvested corn is consumed as ethanol or feed or put into storage.

Storage levels are such that no arbitrage profits are possible. The obligated gasoline producer

and blender decides how much ethanol to buy each year and how many RINs to borrow or

bank to minimize discounted lifetime costs of compliance with mandated ethanol volumes.1

1As defined by RFS rule, obligated parties are any refineries producing gasoline or diesel fuel within the 48
contiguous states or Hawaii, or any importer that imports gasoline or diesel fuel into the 48 contiguous states
or Hawaii. Blenders, who simply buy ethanol and gasoline and blend ethanol into gasoline, are not obligated
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The corn farmer bases current year’s planting decisions on next year’s post-harvest expected

price as shown in equation (3.1). At+1 is acreage harvested in t+ 1. A(·) is a concave function

of Et(pct+1), i.e., A′(·) > 0 and A′′(·) < 0.

At+1 = A(Et(pct+1)) (3.1)

Equilibrium storage satisfies the following no-arbitrage condition

βEt(pct+1) = pct + SCt(xt+1), (3.2)

where xt+1 is beginning corn stock in time t + 1 and per-bushel storage costs is denoted by

SCt. Storage cost includes convenience yield which goes to negative infinity when stock level

approaches zero. The discount factor β equals 1
1+r where r is the interest rate. Equilibrium

corn storage is where the expected gains from holding corn to the next period equals storage

costs. The expected revenue from storing a bushel of corn is the discounted expected price of

corn. The cost of storing one bushel of corn is the per bushel corn price at time t plus the

storage cost. If there is positive economic profit from holding corn, firms and individuals will

store it. With more corn stored for t+ 1, total corn consumption decreases in t and total corn

supply increases in t+1. The current corn price goes up and the expected corn price goes down.

When expected gains from storage equal storage costs the incentive to store corn disappears

and a no-arbitrage condition is reached. When stock level approaches zero, marginal storage

cost goes to negative infinity. Thus, the expected gain can never be less than the cost of holding

one unit of stock. This specification of marginal storage cost eliminates stock-out conditions.

The non-ethanol demand for corn is referred to as feed demand which is denoted by Dc(pct),

where pct is the corn price at time t. Corn demand by ethanol producers is a derived demand

which depends on the US ethanol demand for ethanol. Ethanol demand includes both the

demand for ethanol in E10 and consumer’s demand for E85 is taken from Pouliot and Babcock

(2014) . Total U.S. ethanol disappears according to an ethanol usage curve De(p
d
et, pgt), where

parties under the RFS. However, some blenders also own oil refineries such as BP and ConocoPhilips and so are
considered obligated parties. The mandate for each obligated party is determined as a percentage of the total
gasoline they sell in the United States. We simplify by combining blenders and obligated parties into one entity.
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pdet and pgt are the ethanol price and exogenous gasoline price at which an amount De(p
d
et, pgt)

of ethanol is used. We assume that gasoline supply is perfectly elastic and that changes in the

gasoline price shift the demand curve for ethanol.

Our model focuses on corn and ethanol so we simplify the gasoline sector by assuming

a representative gasoline producer with costs that are proportionate to random oil prices.

The supply of gasoline is therefore perfectly elastic and random. The gasoline producer is

an obligated party who minimizes the lifetime cost of meeting ethanol mandates. The cost

of meeting the mandate in each period is ct(et − εt), where et is total ethanol consumed in

time t and εt is the amount of ethanol that would be consumed without a mandate. Thus

ct(·) measures compliance cost. The blender can borrow or bank RINs up to 20% of the next

period’s total mandate.2 Let Bt be the beginning stock of RINs and Mt be the mandate in

each period t. The obligated party minimizes life time compliance cost:

min
et,∀t

∞∑
t=0

βtE0(ct(et − εt)) (3.3)

s.t. Bt+1 = min(Bt + et −Mt, 0.2Mt+1) (3.4)

Bt + et −Mt > −0.2Mt (3.5)

where 0.2Mt+1 is the upper bound of banked RINs and−0.2Mt+1 is the lower bound of borrowed

RINs. Equation (3.4) says that the carryover Bt+1 cannot exceed the maximum carryover

allowed at time t. Available RINs stock is the sum of RIN stock and RINs generated less the

mandate, Bt+et−Mt. If available RIN stock is not greater than the banking limit, Bt+et−Mt

will be banked. If available RIN stock exceeds the banking limit, only 0.2Mt+1 can be used in

the next period and the rest of the available RINs will expire. Borrowing constraint (3.5) says

that carryover RIN stock should be greater than −0.2 of next period’s mandate. RIN stock is

a state variable in ethanol producer’s problem.

2 RFS rules specify that RINs are valid for only two years and forbids RIN borrowing in consecutive two
years. To simplify model solutions we allow borrowing in consecutive years when economic incentivce to do so
exists.



www.manaraa.com

34

Let

Vt(Bt, T ) = min
et,∀t

∞∑
t=T

βtE0(ct(et − εt)). (3.6)

The Bellman equation for solving the problem with borrowing and banking constraints is

Vt(Bt, t) = min
et
ct(et−εt)+βEtVt+1(min(Bt+et−Mt, 0.2Mt+1), t+1)+λt(−0.2Mt+1−(Bt+et−Mt)),

(3.7)
where λt is Karush-Kuhn-Tucker (K.K.T) multiplier. The K.K.T. conditions are:

et : c
′
t(et − εt) + β

∂EtVt+1(min(Bt + et −Mt, 0.2Mt+1), t+ 1)

∂et
− λt > 0,

∂Vt(Bt, t)

∂et
· et = 0,

(3.8)

λt : −0.2Mt+1 − (Bt + et −Mt) 6 0, (−0.2Mt+1 − (Bt + et −Mt)) · λt = 0, λt > 0. (3.9)

The envelope condition is

∂Vt(Bt, t)

∂Bt
= β

∂EtVt+1(min(Bt + et −Mt, 0.2Mt+1), t+ 1)

∂Bt
− λt. (3.10)

Without RINs borrowing and banking, the ethanol producer has to produce at least the

mandated level in each period. After introducing borrowing and banking provisions, the ethanol

producer can produce less than or more than the mandated level to minimize the total cost of

meeting the obligated volume for all time periods. (3.8) means that if total ethanol production

is not zero then ∂Vt(Bt, t)
∂et

= 0. Ethanol produced, et, cannot be zero because at least 80% of

the mandate has to be met by RINs generated in this period. Thus the K.K.T condition with

respect to et (3.8) becomes

et : c
′
t(et − εt) + β

∂EtVt+1(min(Bt + et −Mt, 0.2Mt+1), t+ 1)

∂et
− λt = 0. (3.11)

If the borrowing and banking constraints are not binding, then marginal cost of the borrow-

ing constraint equals zero (λt = 0) and all available RINs will be banked Bt+1 = Bt + et −mt.

Equation (3.11) becomes



www.manaraa.com

35

c
′
t(et − εt) = −β∂EtVt+1(min(Bt + et −Mt, 0.2Mt+1), t+ 1)

∂et
, (3.12)

and together with equation (3.10), we have the marginal compliance cost in time t equals the

discounted expected marginal compliance cost in the next period:

c
′
t(et − εt) = βEt(c

′
t+1(et+1 − εt+1)). (3.13)

The relationship between marginal compliance cost in t and expected marginal compliance cost

in t+ n can be derived from equation (3.13),

c
′
t(et − εt) = βnEt(c

′
t+n(et+n − εt+n)). (3.14)

Equation (3.14) says that the expected marginal compliance cost increases at the interest

rate. If the expected marginal compliance cost increases at a rate greater than interest rate,

the gasoline producer would have an incentive to bank RINs. With more ethanol produced

and more RINs banked, current marginal compliance cost increases and expected marginal

cost decreases. No more RINs will be banked until current marginal compliance cost equals

the discounted expected marginal compliance cost. If the expected marginal compliance cost

grows less than interest rate, ethanol producer will borrow RINs from future, resulting in a

decrease in current marginal compliance cost and a rise in expected marginal compliance cost.

An equilibrium is achieved when current marginal compliance cost is equal to the discounted

expected marginal compliance cost.

If the maximum banking limit is reached, λt is zero, min(Bt+et−Mt, 0.2Mt+1) = 0.2Mt+1,

and (3.11) becomes

c
′
t(et − εt) = −β∂EtVt+1(min(Bt + et −Mt, 0.2Mt+1), t+ 1)

∂et
= β

∂EtVt+1(0.2Mt+1)

∂et
= 0.

(3.15)

Marginal cost is zero only if no extra ethanol is consumed and

et = εt. (3.16)
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In this case, the available RIN stock could be greater than the number of RINs that can be

banked so that additional RINs have no value. The optimal condition for ethanol consumption

requires that the marginal compliance cost of meeting the mandate is zero which implies by

(3.16) that consumption produced is the same as if there is no mandate and no banking and

borrowing of RINs.

When the borrowing constraint is binding at time t , et − (Mt − Bt) = −0.2Mt+1, λt > 0.

Then we have

c
′
t(et − εt) = βEt(c

′
t+1(et+1 − εt+1)) + λt. (3.17)

Equation (3.17) says that the expected marginal compliance cost grows less than the rate of

interest, the ethanol producer would have an incentive to borrow additional RINs from the

future. However there is a physical constraint restricting the maximum borrowing, resulting in

a binding borrowing constraint.

From the discussions of the constraints, we know that the expected marginal cost compliance

costs increases at the rate of interest whenever the constraints on borrowing and banking are

not binding. Marginal compliance cost grows by less than the interest rate when the borrowing

constraint binds and marginal compliance cost is zero when the banking constraint binds.

Marginal expected compliance cost equals the expected RIN price which is the difference

between the marginal cost of producing ethanol and marginal benefit of using ethanol (McPhail

(2010)). The marginal cost of producing an extra gallon of ethanol equals feedstock cost plus a

constant conversion cost. Corn is assumed to be the feedstock. Let Ye be the net corn use for

producing a gallon of ethanol accounting for byproducts produced per bushel of corn processed

in ethanol production3. Per gallon conversion cost is assumed to be a constant ce. Assume that

the technology for producing ethanol from corn is constant for all time periods so that Ye and

ce do not change with t. Thus pct
Ye

+ ce is the marginal cost of ethanol production. With more

corn devoted to produce ethanol, corn price rises and the marginal production cost increases.

This specification connects the ethanol market with the corn market. The marginal benefit of

3The details of modeling the net corn production for ethanol can be found in Lapan and Moschini (2012)
page 227.
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blending ethanol equals the ethanol price pdet along the ethanol demand curve. Thus the RIN

price in any period equals pct
Ye

+ ce − pdet.

Our model treats RIN as a storable commodity. Just as storing stabilizes corn prices under

yield uncertainty, RIN storage serves the same function, helping to stabilize ethanol prices and

corn prices under an ethanol mandate in a stochastic world. The carryover of corn is determined

by the no-arbitrage equation that compares the value of storing one unit in this period and

the value of consuming one unit in this period. Without borrowing and banking constraints,

RIN storage is determined by the no-arbitrage condition that equates the marginal cost of

meeting the mandate in this period to the discounted value of the expected cost of meeting the

mandate in the next period. The difference between the use of corn storage and RIN storage

is that corn carry-over can be consumed but RIN storage cannot be consumed as ethanol in

the next period. Because stored RINs can be used to meet the next period’s mandate, they

affect equilibrium ethanol production. If ethanol production is greater than the mandate, total

ethanol production will be consumed and the extra generated RINs will be stored for use in

the next period up to the banking constraint.

Markets are in equilibrium when corn supply equals corn demand, when ethanol production

equals ethanol consumption and when there are no arbitrage profit possibilities from storing

RINs or corn. The total supply of corn at time t is denotes as TSt = Atyt + xt, where At is

the acreage harvested at time t which is decided by farmers in time t − 1: At = A(Et−1(pt))

and where yt is the corn yield at time t. Total corn demand is the sum of feed demand

Dc(pct), corn for ethanol et
Ye

and storage xt+1. Equilibrium conditions are sequences of quan-

tities {et, Dct, xt+1, At+1}∞t=0 and prices {pct, pet}∞t=0 such that (i) the quantities solve the

arbitrage conditions for different agents given the sequence of prices, (ii) the corn market clear-

ing condition is met as shown by equation (3.18), (iii) and the ethanol market clears through

equation (3.19).

∀t, A(Et−1(pct))yt + xt = Dc(pct) +
et
Ye

+ xt+1 (3.18)

et = De(p
d
et, pgt) (3.19)
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3.3 Calibration

Wholesale Gasoline Price

The ethanol demand curve is taken from Pouliot and Babcock (2014) which includes both

ethanol demanded in E10 by blenders and ethanol demanded in E85 by consumers. There is

little data for U.S. ethanol demand beyond the blend wall. Pouliot and Babcock (2014) use

Brazilian data to estimate the consumers willingness to pay for E85, making the assumption

that US consumer preferences for E85 are identical to Brazilian preferences.

Both the ethanol demand in E10 and E85 depend on the gasoline price. Ethanol in E10

complements gasoline, whereas ethanol in E85 substitutes for gasoline. Denote the ethanol

demand functions for E10 and E85 as Q10
e = D10

e (pet, pgt), Q
85
e = D85

e (pr85t, p
r
gt), where pgt, pet,

pr85t and prgt are the wholesale gasoline price, wholesale ethanol price, retail E85 price and retail

gasoline price in time t. Horizontal summation of the two inverse demand curves gives rise to

the total inverse demand of ethanol. Details of the functional forms is provided as follows.

To allow the model to be solved at different gasoline prices, both the ethanol demand in

E10 and E85 are approximated using piecewise linear functions:

Q10
e =



13 0 < pet
pgt

< 0.686777

14.2178− 1.7731 petpgt 0.686777 < pet
pgt

6 1.074941

18.5193− 5.7748 petpgt 1.074941 6 pet
pgt

6 1.145516

11.9042 pet
pgt

= 1.145516

(3.20)

The maximum ethanol demanded in E10 is 13 billion gallons to reflect the blend wall.

Let x be the ratio of retail E85 price to retail gasoline price, x =
pr85t
prgt

. With the current

fleet of flex vehicle and new E85 stations, ethanol demand in E85 as a function of price ratio

with no new E85 stations is as follows.
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Q85
e =



1.6979− 0.7773x 0.409 6 x < 0.62

3.4383− 3.5843x 0.62 6 x < 0.92

0.7814− 0.6964x 0.92 6 x < 1.1

(3.21)

With 2500 new E85 stations, ethanol demand in E85 is:

Q85
e =



3.22− 1.5283x 0.409 6 x < 0.688

7.308− 7.47x 0.688 6 x < 0.9188

2.4482− 2.1808x 0.9188 6 x < 1.0864

(3.22)

Ethanol demand in E85 with 5000 new E85 stations is:

Q85
e =



4.3108− 1.249x 0.409 6 x < 0.67

11.2651− 11.6285x 0.67 6 x < 0.93

2.3139− 2.0035x 0.93 6 x < 1.1

(3.23)

The demand for E85 is small when the price of E85, adjusted on a cost per mile basis, is

higher than E10. But demand becomes elastic when E85 prices become competitive with E10.

Eventually demand becomes quite inelastic due to limits on the number of stations that sell

E85. The range of E85 quantities where demand is elastic increases if additional E85 fueling

stations become available because the bottleneck limiting demand for E85 is access to fueling

stations not the number of flex vehicles. In this analysis, it is assumed that E85 contains 75

percent ethanol, the wholesale E85 price is the weighted average price of ethanol and gasoline,

retail E85 ethanol price is $0.75 per gallon higher than wholesale price and retail gasoline price

is $0.75 per gallon higher than the wholesale gasoline price (Pouliot and Babcock (2014)).

Thus the price ratio x can also be stated as
0.75pgt+0.25pet+0.75

0.75+pgt
. This value can be substituted

into (3.21), (3.22), (3.23). Adding the quantity of ethanol in E10 and E85 using (3.20), (3.21),

(3.22), (3.23). Then we get the inverse ethanol usage function et = De(p
d
et, pgt) for each

investment with each wholesale gasoline price. The inverse ethanol usage function is pdet =

D−1
e (et, pgt).
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3.3.1 Wholesale gasoline price

Wholesale gasoline prices are assumed to be log-normally distributed. Mean wholesale

gasoline price in 2014/15 is set to be $2.68/gallon which is the average of RBOB gasoline futures

prices from September 2014 to August 2015 in August 13th 2014. The values of RBOB gasoline

futures prices are taken from CME Group. The RBOB future gasoline price is falling in the

following years and we assume the mean value for 2015/16 is $2.60/gallon and is $2.50/gallon

for all years in the future. The standard deviation is assumed to be 20% of the mean price.

3.3.2 Mandate

The RFS operates on a calendar-year basis while our model operates on a marketing year

basis. So we assume that the marketing year mandate is one-third of one year and two-thirds of

the next year. Thus for the scenario that allows the mandate to increase to 15 billion gallons,

we set the 2014/15 marketing year mandate at 14.8 billion gallons. The mandate is set at 15

billion gallons for all subsequent years.

3.3.3 Beginning RIN stock

The potential carry in of RINs in 2014 is estimated to be 0.997 billion gallons when 2013

yearly mandate is set to be 13.8 billion gallons (Paulson (2014)). Because the marketing year

mandate for 2012/13 is 13.6 billion gallons, the carry-in RIN in 2013/14 is assumed to be 0.2

more than Paulson’s estimate. Thus the beginning RIN stock is set to be 1.2 billion gallons

in 2013/14. According to WASDE report in August 2014, 5,075 million bushels of corn are

devoted to ethanol production and a bushel of corn yields 2.8 gallons of ethanol. Ethanol yield

from corn is taken from monthly profitability of ethanol by Iowa State University4. Thus the

generated ethanol production is 5,075*2.8=14.21 billion gallons. The 2013/14 mandate is 14.2

billion gallons. The carryover stock is then calculated as the potential carry-in in 2013/14

plus the generation less the 2013/14 mandate. Carryover stock is 1.2+14.21-14.2=1.408 billion

gallons.

4 http://www.extension.iastate.edu/agdm/refirst.html
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3.3.4 Corn Demand

In this study, we use a constant elasticity non-ethanol, non-storage demand function.

pc = a1D
a2
c

When producing ethanol from corn, a valuable by-product called DDGS (dry distillers grains

plus solubles) is also produced. DDGS is a close substitute for corn in livestock feed. If the

by-product’s price is proportional to corn, then it is legitimate to assume that less corn can be

used for producing the same amount of ethanol (Lapan and Moschini (2012)). Here, we assume

that the price of DDGS is 91% of the price of corn (Anderson, Anderson and Sawyer (2010)).

56 lbs of corn (1 bushel) that is processed into ethanol production will produce 17 lbs of DDGS.

The net corn used for producing 2.8 gallons of ethanol is calculated as 1− 0.91 ∗ 17/56. That

is, the yield of one bushel of corn is 2.8
1−0.91∗17/56 = 3.87 gallons of ethanol. It is assumed that

the corn feed demand elasticity is fixed at -0.44 (Adjemian and Smith (2012)). Dc includes

all non-ethanol use except corn storage. The value of a1 in 2014/15 is calibrated using the

average received corn price by farmers and the non-ethanol, non-storage quantity demanded

in August 2014 WASDE report. The non-ethanol use for corn is calculated by subtracting the

net corn use for ethanol from the total use of corn ( Total corn use(without storage) - corn use

for ethanol *(1-0.91*17/56) = non-ethanol use). The positions of demand curves from 2015/16

to 2019/20 are based on USDA’s long term agriculture projections in February 2014.5 From

2012/13 to 2015/16, the values of a1 are different. a1 is assumed to be constant after 2015/16.

3.3.5 Corn Yield

Corn yield is assumed to be beta-distributed with a linear trend. US corn yields from 1970

to 2013 reported by National Agricultural Statistics Service (NASS) of the U.S. Department of

Agriculture are used to estimate the trend. Then we scaled up all the yield realizations from

1970-2013 to 2013 trend yield levels. Detrended yield data is used for estimating the parameters

of a beta distribution that represents corn yield distribution during 2013/14 marketing year.

5USDA long term projection 2014 can be found here
http://usda.mannlib.cornell.edu/MannUsda/viewStaticPage.do?url=http://usda.mannlib.cornell.edu/usda/ers/94005/./2014/index.html
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The estimated corn yield is assumed to have an upper bound yu = 200 bushels per acre,

lower bound yl = 90 bushels per acre. The beta distribution in 2013/14 is beta(7.3766, 4.7497).

According to the corn yield trend line, the per acre mean yield value increases by approximately

two bushels per year. Thus we assume that the whole corn yield distribution shifts out two

bushels per acre until 2019/20. After 2019/20, assume that corn yield distribution remains the

same as in 2019/20. The calibrated mean yield values are documented in table 6. Corn yield

in 2014 is set to be 167.4 bushels per acre according to August WASDE 2014. Corn yields are

impacted mainly by weather, so we assume that corn yields are independent of gasoline prices.

3.3.6 Other Variable Cost

Per gallon ethanol conversion cost (ce) is assumed to be constant. This cost includes the

cost of natural gas used in the production process and variable costs. We fix the non-corn

ethanol production cost 50 cents per gallon (Hofstrand (2014).

3.3.7 Harvested Acres

Farmers make planting decisions according to the expected corn price. We assume that

harvested acres has a constant elasticity functional form as

A = δ1E(pc)
δ2 . (3.24)

The elasticity of harvested acres is assumed to be 0.2. This supply elasticity is roughly consis-

tent with that of Roberts and Schlenker (2010) which is 0.14. δ1 is determined by the expected

price for 2013/14 and the harvested acres in 2013/14. The per bushel expected price is rep-

resented by the average marketing year’s December futures price in 2013 from September 1st

2012 to August 31st 2013. The expected price in 2013/14 is $5.68 per bushel. The harvested

acres is 0.877 100 million acres. We have δ1 = 0.62. We use harvested acres in August WASDE

2014 to be the real harvested acres in 2014. After 2014, the acreage decision follows (3.24).
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3.3.8 Storage Cost and Convenience Yield

The storage cost per unit includes per unit observed cost and per unit unobserved cost.

The observed part of the storage cost (OSC) is a constant physical per unit storage cost paid

by the storer. We assume that the observed per bushel storage cost is 3 cents per bushel

per month (Peterson and Tomek (2010)). The yearly observed storage cost is thus $0.36 per

bushel, OSCt = 0.36. One component of unobserved storage cost is the opportunity cost that

increases with stock level when stock levels are large. This is because holding more stock of

one crop decreases the opportunity of holding other more profitable crops (Paul (1970)). The

other unobserved storage cost is the marginal convenience yield. The unobserved storage cost

should be increasing with stock level and it is negative when stock level st is small and positive

when stock level is high. Rui and Miranda (1995) uses a logarithmic function to achieve it.

USCt = η1 + η2log(sit+1) where η1 and η2 are two parameters needed to be calibrated. We

calibrate this USCt to two points. One point has low ending stock and the other has abundant

ending stock in recent years. The chosen low ending stock point is 2012/13. Both 2008/09 and

2009/10 have high ending stocks. Thus we use the average of the stock level and the average of

unobserved storage cost in those two years as the other point. We can get unobserved storage

cost from the storage no-arbitrage condition: USCt = βEt(pt+1)− pt −OSCt. We collect our

data including current price pt, expected price Et(pt+1) in 2008/09, 2009/10 and 2012/13. Use

average price received by the farmer in each marketing year from USDA NASS for the current

year price. The average of December corn futures price from September 1st to August 31st

is used as the yearly expected price. The discount factor, β, is defined as 1
1+r where r is the

interest rate. We use the return for 1-year treasury constant maturities as risk free interest

rate. for all interest rates from 2014, we set the value to 0.13%, which is the same as the annual

1-year treasury constant maturities in 2013. We have η1 = −1.65, η2 = −2.8926. It is also

assumed that the per bushel storage cost goes to infinity when approaching the storage capacity

4.0 billion bushels. Thus we have USCt =


−1.65− 2.8926log(st+1) 0 < st+1 < 0.4

∞ st+1 > 0.4

.
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3.4 Solution Methods

Corn stock and RIN stock are the two state variables in our model. The model is solved

by finding the expected corn price and expected ethanol price functions which depend on these

two state variables. These unknown functions need to meet three conditions: acreage must

maximize farmer expected profit; no-arbitrage profits for corn storage; and no-arbitrage profits

for RIN storage. The collocation method is used to solve the problem. This method has

been applied to solve other commodity storage models including Miranda (1997), Peterson and

Tomek (2005) and Gouel (2013). In our model, we assume a stationary world after 2019/2020

in that we assume that non-ethanol demand and the distributions of the stochastic variables

remain constant over time. Before 2019/20 mean yield increases by two bushels per acre per

year and non-ethanol demand changes are calibrated to USDA projections.

The collocation method approximates an unknown function P using a linear combination of

functions φ1, φ2,... , φn, called the basis functions (Judd 1998). If there is only one dimension

P (x) ≈
n∑
j=1

cjφj(x) (3.25)

The unknown coefficients c1, c2,... , cn are determined when the approximated function satisfies

the model’s equilibrium conditions at n points x1, x2,... , xn chosen in the space of x, [x, x̄].

All possible values of x should be in [x, x̄]. The n points are called the collocation nodes.

The expected prices of corn and ethanol (EPc, EPe) can be represented as two dimensional

polynomials of given degrees of approximation. The approximation of expected corn prices and

ethanol prices functions at each collocation node i are given by

EPk(xi, Bi) =

n1∑
j1=1

n2∑
j2=1

ckj1j2φj1(xi)φj2(Bi) (3.26)

k = c, e, j1 = 1, 2, ...n1, j2 = 1, 2, ..., n2

The steps used to solve for these functions are as follows:

(0) Initial Step:
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Select the degree of approximation in each dimension ni, for i = 1, 2. Select the cubic spline

basis functions φ1,..., φn1n2 . Select the collocation nodes xi, Bi, for i = 1, 2, ...n1n2. Guess

initial values of ccj1j2 ,cej1j2 , j1 = 1, ..., n1, j2 = 1, ..., n2, where n1, n2 are the selected degrees

of approximation in each dimension. We use n1 = 30, n2 = 10 to show the results. Then we

determine the state spaces for each state variable. Let x lie in the interval [0, 4] in units of

billion bushels and B is chosen in [−3, 3] in units of billion gallons. n1n2 spline collocation

points are chosen to be evenly distributed in each dimension.

Gaussian quadrature is used to replace the continuous yield and gasoline price distributions

by m1-point and m2-point discrete distributions. The discrete yield values are y1, y2, ... ,

ym1 with the associated probabilities wk1 for k1 = 1, 2, ...,m1. The values pg1, pg2, ... ,

pgm2 are assumed to be the discrete demand shocks and wk2 with k2 = 1, 2, ...,m2 are the

corresponding probabilities. We pick 8 quadrature nodes for both the beta distribution and

log-normal distribution. The Matlab codes given in Miranda and Fackler’s book are used to

generate quadrature nodes and the corresponding probabilities.

(1) Solution Step:

Get the total supply (Aik1k2) for each collocation node (i) and Gaussian quadrature node (k1,

k2). The acreage harvested in t can be written as Aik1k2 = A(
∑n1

j1=1

∑n2
j2=1 ccj1j2φj1(xi)φj2(Bi)),

so the total supply at each collocation node (xi, Bi) given yk1 and pgk2 is

TSik1k2 = xi +Aik1k2yk1 . (3.27)

Given the total supply, solve the corn storage arbitrage condition and RIN storage arbitrage

conditions described in (3.28), (3.29) and (3.30) to get corn storage (xik1k2) and quantity of

ethanol (eik1k2) at each collocation node i for i = 1, 2, ..., n1n2 and each Gaussian quadrature

node k1 = 1, 2, ...,m1, k2 = 1, 2, ...,m2.

βEPc(xik1k2 , Bik1k2)− pc(TSik1k2 − xik1k2 −
eik1k2
Ye

)− SC(xik1k2) = 0. (3.28)
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Let

F =
1

Ye
pc(TSik1k2 − xik1k2 −

eik1k2
Ye

) + ce− pde(eik1k2 , pgk2)

−β[
1

Ye
E(Pc(xik1k2 , Bik1k2)) + ce− E(Pe(xik1k2 , Bik1k2)))

with Bik1k2 = min(Bi + eik1k2 −M, 0.2M),

eik1k2 = −0.2M +M −Bi, F > 0

− 0.2M +M −Bi 6 eik1k2 6 0.2M +M −Bi, F = 0 (3.29)

eik1k2 = 0.2M +M −Bi, F < 0.

The nonlinear equation system (3.28) to (3.29) can be solved using PATH Solver6. When-

ever the ethanol consumption binds by eik1k2 = 0.2M + M − Bi, we need to solve equations

(3.28) together with equation (3.30) for the unknowns xik1k2 , eik1k2 ,

1

Ye
pc(TSik1k2 − xik1k2 −

eik1k2
Ye

) + ce− pde(eik1k2 , pgk2) = 0. (3.30)

Equation (3.30) says that if the banking constraint binds, we assume that ethanol produc-

tion is the same as it would be with no borrowing and banking limit and only the maximum

level of banked RIN stock will be carried to the next period.

(2) Update Step:

update the coefficients ĉcj1j2 ,ĉej1j2 that solve the equation system (3.31), (3.32):

n1∑
j1=0

n2∑
j2=0

ĉcj1j2φj1(xi)φj2(Bi) =

m1∑
k1=1

m2∑
k2=1

wk1wk2pc(TSik1k2 − xik1k2 −
eik1k2
Ye

), i = 1, ..., n1n2

(3.31)

n1∑
j1=0

n2∑
j2=0

ĉej1j2φj1(xi)φj2(Bi) =

m1∑
k1=1

m2∑
k2=1

wk1wk2p
d
e(eik1k2 , pgk2), i = 1, ..., n1n2 (3.32)

6Path solver for Matlab can be downloaded from http://pages.cs.wisc.edu/˜ferris/path.html.
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(3) Convergence Check:

If | ĉcjj2 − ccj1j2 |< ε and | ĉej1j2 − cej1j2 |< ε for all j1, j2 and some convergence tolerance ε,

set ĉcj1j2 = ccj1j2 and ĉej1j2 = cej1j2 ; otherwise set ccj1j2 = ĉcj1j2 and cej1j2 = ĉej1j2 for all j1, j2

and return to step (1).

Let T=2019/20. In the non-stationary world before 2019/20, we solve for approximated

expected price functions in T − 1 taking T ′s expected price functions as given. After solving

approximated expected price functions in T − 1, the coefficients for approximated expected

prices can be solved backwards in T − 2, T − 3, ... in the same way.

3.5 Results

If we are in the nth state of world in 2014/15, we can solve for storage decision in 2014/15

(x15/16), harvest decision in next year (A15/16), beginning RIN stocks in the next period

(B15/16), quantity of ethanol (e14/15) and corn feed consumption (TS14/15−
e14/15
Ye
−x14/15) given

the beginning corn stock (x14/15), beginning RIN stock (B14/15), acreage harvested (A14/15) in

2014/15. Thus all prices are obtained in 2014/15. Starting from all known values of 2014/15

and if we are in the nth state of the world in 2015/16, first we need to know the values of all

state variables. The beginning corn stock in 2015/16 is x15/16 and the beginning RIN stock is

B15/16. Then we solve for all variables of interest in 2015/16 when the nth state happens and

all prices are known for 2015/16. The same method is used for solving the prices in 2016/17.

After solving for the unknown variables for each of the 5,000 sequences of states we obtain

distributions of prices in each period.

Table 1 shows the average of the simulations for the scenario in which EPA lets the ethanol

mandate increase to 14.4 billion gallons in 2014 and 15 billion gallons in 2015. Because this

model is solved on a marketing year basis, the mandates that are imposed on the model solu-

tions are 14.8 billion gallons for the 2014/15 marketing year, and 15 billion gallons thereafter.

To allow these mandates to be met, 2,500 additional stations that sell E85 are installed in

the 2014/15 marketing year and another 2,500 additional stations are built in the following

marketing year.

The results show that the increased ethanol mandates can be met with the 2,500 additional
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Table 3.1: Average Model Solutions with Increased Mandates*

14/15 15/16 16/17 17/18 18/19 19/20

Ethanol Mandate 14.8 15 15 15 15 15

New E85 Stations 2,500 2,500 0 0 0 0

Harvested Acreage 83.80 82.14 82.30 82.47 82.70 82.91

Corn Production 1.40 1.32 1.34 1.36 1.38 1.40

Corn Price 3.86 4.05 4.12 4.18 4.22 4.28

Ending Corn Stocks 1.58 1.53 1.52 1.52 1.53 1.49

Ethanol Demand Price 0.96 1.00 1.02 1.03 1.05 1.06

Ethanol Production 14.36 15.08 15.00 14.97 14.96 14.95

RIN Price 0.5412 0.5436 0.5449 0.5452 0.5452 0.5437

Beginning RIN Stock 1.408 0.969 1.051 1.018 1.003 0.968

*Units are billion gallons for ethanol mandate, ethanol production, and beginning RIN stock;

million acres for harvested acreage $ per bushel for corn prices, $ per gallon for ethanol price

and RIN price; and billion bushels for ending corn stocks and corn production.

stations in the first two marketing years through a combination of expanded ethanol consump-

tion and production and a drawdown in the number of banked RINs. The first-year drawdown

of banked RINs is about 0.44 billion RINs to meet the 14.8 billion gallon mandate. Thus about

14.36 billion gallons of ethanol are actually consumed. Thereafter, ethanol production and

consumption are much more closely aligned, with the average size of the RIN bank staying

around zero in the following periods. Average corn prices rise modestly through the projection

period. This modest rise hides the actual volatility in the model solutions caused by yield

variability. Average harvested corn acreage falls from its high mark of 83.8 million acres in

2014, stabilizing at an average level of 82.5 million acres. Average RIN prices are slightly below

55 cents per gallon which implies that ethanol mandates push average ethanol consumption

higher than what market demand would dictate in the absence of mandates. This level of RIN

prices would likely incentivize additional investment in stations that sell E85 (or E15) which

would then results in lower RIN prices.

Average model solutions with reduced mandates and no investment in E85 stations are

shown in Table 2. Corn prices and production are modestly lower due to decreased demand

for ethanol. Average RIN prices are close to zero which implies that the 13 billion gallon

ethanol mandate is largely irrelevant to ethanol production and consumption levels. Because
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Table 3.2: Average Model Solutions with Reduced Mandates*

14/15 15/16 16/17 17/18 18/19 19/20

Ethanol Mandate 13.00 13.00 13.00 13.00 13.00 13.00

New E85 Stations 0.00 0.00 0.00 0.00 0.00 0.00

Harvested Acreage 83.80 81.06 81.25 81.43 81.68 81.91

Corn Production 1.40 1.31 1.32 1.34 1.36 1.38

Corn Price 3.61 3.80 3.87 3.92 3.97 4.02

Ending Corn Stocks 1.58 1.52 1.51 1.52 1.52 1.48

Ethanol Demand Price 1.42 1.48 1.49 1.51 1.52 1.53

Ethanol Production 13.20 13.37 13.27 13.25 13.24 13.23

RIN Price 0.0113 0.0063 0.0064 0.0071 0.0069 0.0083

Beginning RIN Stock 1.408 1.603 1.927 2.026 2.061 2.066

*Units are billion gallons for ethanol mandate, ethanol production, and beginning RIN stock;

million acres for harvested acreage $ per bushel for corn prices, $ per gallon for ethanol price

and RIN price; and billion bushels for ending corn stocks and corn production.

the average price of RINs is so low, the average bank of RINs grows and is used to buffer the

effects of short corn crops. At the end of the projection period the bank of RINs grows to

about 2 billion on average.

The impact of reduced mandates can be measured by comparing the Table 2 results with

the Table 1 results. Both the absolute difference in average results and the percent difference

are shown in Table 3. Corn prices drop about 6 percent from reduced mandates or about 25

cents per bushel. Corn production drops by about 17 million bushels which is between 1.2 and

1.3 percent. Ethanol production drops by about 11.5 percent from reduced mandates. Corn

prices would decrease even more from this drop in demand except that the decrease in corn

supply from lower planted acreage boosts average prices a bit.

There are two ways of viewing these results. The rather modest decrease in corn prices from

relaxing the mandates could be viewed as evidence that the agricultural crop sector will not

suffer too much from a reduction in ethanol mandates. An alternative view is that a reduction in

mandates would not be a panacea for livestock organizations or anti-hunger groups who want to

see corn prices decrease by even more than they have dropped since September, 2013. The low

RIN prices in Table 2 also suggest that corn prices would not move any lower even if mandates

were eliminated, because the mandate is not increasing the production of ethanol. This result
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Table 3.3: Table 3. Impact of Reduced Ethanol Mandates*

14/15 15/16 16/17 17/18 18/19 19/20

Corn Production 0 -0.017415 -0.01711815 -0.01713816 -0.01702584 -0.01689

0.00% -1.31% -1.28% -1.26% -1.23% -1.21%

Corn Price -0.2557 -0.2545 -0.2573 -0.257 -0.2536 -0.2521

-6.62% -6.28% -6.24% -6.15% -6.01% -5.90%

Ending Corn Stocks -0.008 -0.009 -0.008 -0.008 -0.008 -0.009

-0.51% -0.59% -0.53% -0.53% -0.52% -0.60%

Ethanol Demand Price 0.4624 0.4712 0.4717 0.4715 0.4726 0.4701

48.17% 46.93% 46.20% 45.59% 45.22% 44.30%

Ethanol Production -1.166 -1.714 -1.731 -1.72 -1.72 -1.719

-8.12% -11.36% -11.54% -11.49% -11.50% -11.50%

RIN Price -0.5299 -0.5373 -0.5385 -0.5381 -0.5383 -0.5354

-97.91% -98.84% -98.83% -98.70% -98.73% -98.47%

Beginning RIN Stock 0 0.634 0.876 1.008 1.058 1.098

*Units are billion gallons for ethanol production and beginning RIN stock; million acres for

harvested acreage $ per bushel for corn prices, $ per gallon for ethanol price and RIN price;

and billion bushels for ending corn stocks and corn production.

hinges on the assumption that oil companies would continue to find it profitable to blend

inexpensive ethanol with low-octane gasoline blendstock to create 87 regular gasoline. In either

case, it is difficult to argue that a change in corn prices provides an over-riding justification for

either reducing mandates or letting them grow because the impacts of a reduction are modest.

Before concluding it is useful to consider how a reduction in mandates would affect the

distribution of corn and RIN prices. One justification for lower mandates is that mandates can

exacerbate corn price spikes caused by short crops. Figure 1 shows the distribution of corn

prices for the 2017/18 marketing year for the two scenarios considered. The distribution with

the increased mandate is shifted to the right, which represents a higher average corn price, and

it is slightly flatter, which seems to indicate a bit more price variability. But the coefficient

of variation of price in the two distrbutions are approximately equal. The increase in price

variability is not greater because of the role that RIN and corn stocks play in buffering the

effects of low corn yields. Corn stocks are drawn down in low yield years as are RIN buffer

stocks. Due to the ability to borrow RINs from future years, the RIN stock can actually turn

negative, further buffering the effects of low corn yields.
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Figure 3.1: Distributions of Corn Prices in 2015/16

Figure 2 shows the two distributions of RIN price solutions in 2017/18. The distribution

with reduced mandates shows that 90 percent of the RIN price solutions are less than one cent.

This represents a return to the situation that mostly prevailed between 2008 and 2011 when

RIN prices were quite low. If mandates are increased and if 5,000 new E85 stations are built,

then about 95 percent of RIN price solutions are between 50 and 80 cents.
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Figure 3.2: Distributions of RIN Prices in 2015/16

3.6 Policy Implications

A substantial part of the opposition to biofuel subsidies and mandates is the impact they

have on the price of food. This opposition was fueled by the coincident increases in corn prices

and biofuel production since 2006. Corn prices reached record high levels early in 2013 due

in part to strong demand for ethanol as well as a record drought that affected the primary

US corn growing regions. For example, the average price received by corn farmers in March

of 2013 was $7.13 per bushel. Since that peak the price of corn has dropped dramatically. In

July 2014 the average price received by farmers for corn was $3.80 per bushel (NASS 2014). In

September 2014, cash prices for corn in Central Iowa had dropped to $2.80 per bushel, a level

not seen since 2006. In contrast to the large year-to-year swings we have seen in corn prices, the

results presented here indicate that EPA’s mandate decisions going forward will impact corn

prices by an average of about 22 cents per bushel or by between 5 and 6 percent. Furthermore,

the results indicate that the volatility of corn prices measured by the coefficient of variation

of price within a year is unaffected by mandate levels. Volatility increases are limited because

corn and RIN stocks buffer the impact of yield shocks on corn prices. These relatively modest
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impact suggests that whether ethanol mandates should be reduced to levels that can be easily

met with 10 percent blends or increased above those levels should be determined by factors

other than the impact on corn prices and subsequent food prices.

Two stated objectives of the RFS are to reduce greenhouse gas emissions and to reduce

petroleum imports. Economists are nearly unanimous that the best way to cut emissions is

with a carbon tax because the cost of reducing emissions is minimized when a tax is applied

equally to all major emission sources. Similarly, the most efficient way of reducing oil imports

is to tax imports. But politicians rarely agree with economists’ prescriptions so second-best

policy instruments such as the RFS that only apply to liquid transportation fuels to meet policy

objectives are utilized.

Increasing RFS mandates above levels that can be met with E10 does increase US biofuel

consumption. This increase likely results in decreased petroleum imports. And unless expanded

mandates result in large unintended increases in greenhouse gas emission (Rajagopal and Plevin

(2013)), substitution of gasoline with ethanol will reduce emission levels, particularly if future

ethanol mandates exceed the 15 billion gallon level that can be met with corn ethanol. Thus

the RFS, however inefficiently, will likely meet its stated objectives.

The question facing EPA and Congress is whether the costs of maintaining support for

biofuels through the RFS are too high for the benefits that are obtained. If the costs are

too great or if a more efficient policy is available, then policy should be changed as quickly

as possible because a quicker decision to withdraw support for biofuels will allow investment

dollars to be redirected to other enterprises. However, if a withdrawal of support for biofuels

is not forthcoming, then an EPA decision to set mandates at levels that lead to low RIN prices

sends exactly the wrong signal to investors because without investment, increased consumption

of biofuels will never occur. The results presented here demonstrate that corn and food price

considerations should not be important factors in the debate.
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Table 3.4: Parameter values in 2014/15

parameter value source or explanation

ethanol yield 2.8 Monthly Profitability of Ethanol

Production by Iowa State

University

DDGS yield 17/56

DDGS price 91% of corn price Anderson, Anderson and

Saweyer(2008)

other ethanol production

cost ce

50 cents Monthly Profitability of Ethanol

Production by Iowa State

University

constant storage cost per

bushel per year within

capacity

36 cents Peterson and Tomek(2005)

beginning corn stock 0.1181 10 million bushels May 2014 WASDE Report

beginning RIN stock 0.1408 10 billion gallon Calculated

non-ethanol demand

elasticity

-0.44 Adjemian and Smith (2012)

supply elasticity 0.2 Roberts and Schlenker (2012)

Increased a little bit

supply factor 0.62 Chicago board of trade

gasoline price distribution log normal(0.9185,0.2722) fit yield data from USDA from

1970 to 2012
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Table 3.5: Parameters in other years

parameters 14/15 15/16 16/17 17/18 18/19 19/20 Source

demand factor(α1) 3.95 3.45 3.62 3.81 4.07 4.36 USDA

mean yield 165.3 160.94 162.94 164.94 166.94 168.94 trend line value

except 14/15

mean gasoline price 2.68 2.6 2.5 2.5 2.5 2.5 RBOB gasoline
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CHAPTER 4. ENDOGENOUS PRICES IN A DYNAMIC MODEL FOR

AGRICULTURAL SUPPLY ANALYSIS

4.1 Introduction

The purpose of this paper is to present a new model of agricultural supply which com-

bines Positive Mathematical Programming (PMP) with the rational expectations storage

model. PMP is an approach widely used for calibrating mathematical models with mul-

tiple agricultural outputs. The PMP approach is able to generate optimal production

plans that replicate a reference allocation. Popularized by Howitt (1995), PMP has

been developed by researchers both in calibration using exogenous supply elasticities

(Hechkelei and Britz (2005), Mrel and Bucaram (2010), Mrel et al. (2011)) or estimation

using multiple data points (Britz and Heckelei (2000), Jansson and Heckelei (2011)).

Most of these models assume exogenous output prices. Arfini et al. (2008) first incor-

porate endogenous prices in PMP by modeling ‘farm level’ demand functions and cost

functions while taking the demand functions into profit maximization problem. Later,

Arfini and Donati point out that their old approach is inappropriate because their model

assumes that individual farms are not price takers so it does not fit the competitive

market. Their new approach introduces endogenous prices by maximizing the difference

between the total value of the output and the total cost of variable inputs subjected to

the aggregating constraints and individual farm’s constraints. However, existing PMP

models do not consider that the acreage decisions made by forward-looking farmers are

determined by expected revenues. One way to include this behavior is to incorporate

with a rational expectations storage model
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The rational expectations storage model has emerged as a powerful tool in crop price

analysis and policy analysis (Williams and Wright (1991), Miranda and Glauber (1993),

Gouel (2013a)). It endogenizes expected price by assuming futures prices formed by

agents are realized expected prices given all optimal decisions about storage, acreage

and consumption. Cafiero et al. (2011) validate the model empirically and raise an im-

portant issue of the quality of solutions properties of generated prices. Miranda (1997)

compares different numerical methods for solving the storage model, including colloca-

tion methods, least squares, space discretization and linearization when approximating

current price functional form. He finds that the collocation method with Chebyshev

or spline polynomials outperforms the other methods. Gouel (2013b) compares meth-

ods for approximating various functions including the value function, the expected crop

price function and the storage rule. He claims that expected price function approxima-

tion leads to the most accurate result because the expected price function is smooth and

close to linear. At the same time, expected price approximation is also the most time

consuming method. However, considering the desired accuracy to achieve, the author

recommends parameterize expected price algorithm especially for several state variables.

Comparing the results given by the storage model with and without convenience yield,

he finds that convenience yield smooths the approximated functions and generally gives

higher accuracy for all methods.

However, computational cost of the collocation method increases exponentially with

the number of state variables. To extend the storage model to multiple crops, we need

to employ new numerical methods.

The perturbation method is widely used in solving dynamic stochastic general equi-

librium (DSGE) models in macroeconomics. The perturbation method linearizes the

solution at the steady state and uses the solution to infer results away from steady

states. Because it only requires solving a system of linear equations, it can be easily

applied to models with multiple state variables. However, the perturbation approxima-

tion performs poorly away from the steady state. Because the economy is usually not
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around the steady state, this method cannot be applied to storage model (Gouel (2013b),

Miranda (1997)).

Kollman et.al (2006) compares several methods to solve stochastic neoclassical growth

models with multiple countries. They suggest using Smolyak collocation method to

interpolate solution functions. Invented by a Russian Mathematician Sergey Smolyak

(1963), Smolyak grid is used instead of tensor gird to interpolate and represent multi-

variate functions. First adopted by Krueger and Kubler (2004) to solve a dynamic

over-lapping generation model in economics, the Smolyak collocation method is also

used in many other applications. Malin et. al (2011) apply it to solve a multiple country

international real business cycle model. Judd et. al (2013) extended the method by using

grid construction and a non-derivative fixed point algorithm.

Besides the Smolyak method, generalized stochastic simulation algorithm (GSSA)

(Judd et al. (2011)) improves stochastic simulation algorithm (Haan and Marcet (1990))

by replacing inaccurate Monte-carlo and unstable standard least square methods to solve

high dimensional dynamic models. GSSA solves the model using a relatively small num-

ber of points that are visited in equilibrium rather than by using the collocation method

which requires larger domains (Judd (1992)). GSSA has been shown to be numerically

stable even with a large number of state variables in multi-country neoclassical growth

models (Judd et al. (2011)), an 80-period overlapping generation model (Hasanhodzic

and Kotlikoff (2013)) and a search and hiring model with heterogeneous workers and

hiring selectivities (Villena-Roldn (2013)).

In this paper, we present a new way of formulating a three crop competitive storage

model. In each period, crops can be consumed or stored for future use. A representative

farmer maximizes expected profit using the expected crop prices and a cost function.

It is assumed that the only production input is land. The cost function is calibrated

to conditions in a base year and the implied expected land elasticities coincide with

exogenous supply elasticities (Mrel and Bucaram (2010)). The model is calibrated to

three crops: corn, soybean and all other crops.
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We incorporate convenience yield in our model. The idea of convenience yield is first

introduced by Kaldor (1939) to explain backwardation. Backwardation is a phenomenon

that positive stocks exist when spot price is less than the next to expire futures price.

Convenience yield is often motivated by the option value of stoage. For example, the

producing firms need to meet a sudden increase in demand to keep consumer’s satisfied.

Thus they need to keep a certain amount of storage even in backwardation. The con-

venience yield is greater when stock on hand is smaller. A recent work by Joseph et al.

(2011) validate the existence of convenience yield for CBOT corn, soybean and wheat

markets using 1990 to 2010 data.

Peterson and Tomek (2005) calibrate convenience yield and embeded it in a rational

expectations storage model for U.S. corn market and find that the model generate similar

price pattern of actual commodity prices. In another recent research of storage model,

Roberts and Tran (2012) generate too little storage comparing to the real world storage

levels. One explaination could be that they do not consider the convenience yield. Later,

Roberts and Tran (2013) use calibrated negative constant storage cost to represent the

existence of convenience yield. In our model we will calibrate a convenience yield similar

to Peterson and Tomek’s approach.

To solve the model, the expected revenue functions are approximated in order to get

the acreage decisions in farmer’s problem. Besides that, either storage, expected price

or current price needs to be approximated as functions of all state variables. If storage

function is approximated, the expected price can be calculated using the known storage

rule. If the expected price function is approximated as storage levels of all crops, then

the storage levels can be solved using Euler equations.

In solving the model, we use both GSSA and the Smolyak collocation method. Then

we need to choose which function to approximate. We are considering storage rule or

expected price function approximations. Storage rule approximation takes less time than

the expected price function approximation, however, the latter way gives more accurate

results. Now we have four candidate approaches: (1) GSSA with storage rule approx-
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imation, (2) GSSA with expected price approximation, (3) Smolyak collocation with

storage rule approximation and (4) Smolyak collocation with parameterized expected

price. GSSA with expected price function is too time-consuming, thus we try the rest

three approaches (1), (3) and (4).

Storage levels for all three crops are state variables in GSSA. Expected crop price

are approximated as functions of storage levels for all crops. We simulate the model

with draws generated from correlated crop yields to get the state space that is visited

in equilibrium. The solutions are computed using the simulated points. Monomial

integration is used instead of quadrature or Monte Carlo. Monomial rules make the

integration possible for many random variables and it is applied for all three methods.

The other two methods use Smolyak collocation methods. One approximates the

storage rule while the other approximates expected crop prices. The steps for Smolyak

collocation method are: (1) Descretize the continuous state space. Finite points are

used to approximate a continuous function. Those chosen finite points are called grid

points. (2) Find basis functions and the collocation matrix. The approximated function

is constructed by unknown coefficients and basis functions. (3) At each grid point, solve

the true values of the approximated functions. (4) Solve for the unknown coefficients.

Compared to a tensor grid, use of a Smolyak grid requires fewer supporting points to

approximate a multivariate function, thus making it feasible to represent higher dimen-

sional functions.

For Smolyak collocation with storage rule approximation, total supply for each crop is

a state variable. Storage rule is approximated as a function of total supply. This is a fixed

point approach associated with a sparse grid. The fixed point approach requires only

direct calculations and it should require less computational time (Judd et. al (2013)).

For Smolyak collocation with parameterized expected price, all storage levels are state

variables. Expected prices are represented as functions of storage. This method requires

time iteration which means it approximates future prices and expected revenues and

solve the current storage decisions using a numerical solver at each grid point. Thus it
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takes more computational time compared to a fixed point approach, but expected price

approximation is shown to be the most accurate algorithm by Gouel (2013).

To date, rational expectations storage models are usually used to solve with one

crop and no resource constraint. Our model with multiple crops and land constraint is

more suitable for policy analysis. Because of the curse of dimensionality, PMP supply

models have never been combined with rational expectations storage model. With the

new methods, we show that it is developed to analyze agricultural supply model in a

realistic way that incorporates forward-looking rational agents1.

In the rest part of the paper, we first introduce the basic model with three crops. The

computational approaches are presented and the candidate solution qualities are tested

next. At the end, we show some simulation results from the model.

4.2 The Model

The model is a three-crop, rational expectations competitive storage model. Each

agents optimization problem is described below:

4.2.1 Farmer

A representative farmer maximizes time t expected profits from planting three crops

given a land constraint. Crop yields are realized in t+1. Land is the only input and

production technology for each activity is Leontief . The farmer’s maximization problem

follows Mrel and Bucaram (2010) with some modifications:

1 The supply side of the model will be further developed to a regional supply model
with ten crops in US. The whole US is divided into 10 regions while each region has
its own supply elasticities. So the model is calibrated into 10 PMPs. There is a total
demand for each crop in the model. Besides the supply side, demand and storage remains
the same as the simple model illustrated here. We will simulate the model 5000 times
with 5000 sequences of 10 years’ crop yields, then we can get crop price distributions for
10 consecutive years. This model will be used for policy analysis similar to the FAPRI
model is used to do.
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Max
xit+1

3∑
i=1

Pitxit+1 − (λ2i − γixi)xit+1 −
1

2
γix

2
it+1 (4.1)

s.t.
3∑
i=1

xit+1 ≤ A

For crop i, xit+1 is the planted acreage at time t, x̄i1 is the observed acreage level

in the base year calibration (t = 0). Let yit+1and pit+1 be time t + 1 yield and price

for crop i. The discounted expected revenue at the time of planting for each crop i is

δEt(pit+1yit+1). Assume that δ = 1
1+r

where r is the interest rate. Cit is the per acre

observed cost. Pit = δEt(pit+1yit+1) − Cit is the gross margin. γ = [γ1, γ2, γ3] is the

coefficient vector needed to be calibrated so that the model’s elasticities are equal to

the exogenously determined elasticities. λ2i is used for exact calibration purposes with

λ2i = Pi0 − λ̄ where λ̄ is the shadow price for the binding land constraint. The value of

land rent is suggested to be used for λ̄ (Gohin and Chantreuil (1999)). The constraint

says that the total acreage for three crops is not greater than A where A =
3∑
i=1

xi1. In

each period, it is assumed that the representative farmer faces the same land constraint.

Instead of using the land supply elasticity with respect to price (Mrel and Bucaram

(2010)), we calibrate the model to land supply elasticity with respect to per-acre expected

revenue. Let η̄i for i = 1, 2, 3 be the expected revenue elasticities in the base year t = 0,

we have

η̄i =
dxi1

dE0(pi1yi1)

E0(pi1yi1)

xi1
(4.2)

Using (4.2), the acreage response to per acre gross margin is

dxi1
dPi0

=
dxi1

d(δE0(pi1yi1)− Cit)
=

1

δ

x̄i1η̄i
E0(pi1yi1)

(4.3)

η̄i and x̄i1 are known. If base year revenue for each crop E0(pi1yi1) is known, we can

get the acreage response and calibrate the unknown parameters γ in the cost function.

Solving the farmer’s constrained optimization problem2,

2The detailed procedure can be found in Mrel and Bucaram (2010) page 399-402.
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dxi1
dPi0

=
1

γi
(1− ∂λ1

∂Pi
) =

1

γi
(1− (

3∑
i=1

1

γi
)−1 1

γi
), i = 1, 2, 3 (4.4)

Where λ1 is the Lagrange multiplier associated with the land constraint. Let wi =

dxi1
dPi0

, if wi <
∑
j 6=i
wj, then we can get positive values of γi, i = 1, 2, 3 by solving three

unknowns from three equations (4.4). This condition requires at least three crops in the

calibration system and the response of one crop should not be greater than the sum of

responses of the other crops.

Note that another assumption here for getting the γ is that the base year expected

revenues are known. In the later algorithm section, we will approximate the expected

revenue for each crop as function of state variables in order to solve farmer’s problem

in each period. If the base year E0(pi1yi1) is pre-determined, it may not be the same as

what is implied by the model. Thus we treat it as endogenous and approximate it in each

iteration using the approximated value. More details will be provided in the algorithm

section.

4.2.2 Storer

A representative storer maximizes his/her profit from storing crops. At time t, the

revenue from storing is the expected crop price in time t + 1. The cost of storing is

storage cost plus the opportunity cost from not selling the crop in time t. Equilibrium

storage satisfies the following no-arbitrage condition for crop i

δEt(pit+1)− pit − SCit = 0 i = 1, 2, 3 (4.5)

where Et(pit+1) is the crop i’s expected price, per bushel storage cost of crop i is

denoted by SCit. The marginal storage cost includes marginal convenience yield which

goes to negative infinity when stock level approaches zero. This specification of marginal

storage cost will eliminate stock-out conditions.
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4.2.3 Consumer

A represented consumer maximizes his/her utility by consuming three crops and a

numeraire good mt given a budget constraint. Assume the utility function is separable.

The price for crop i is denoted by pit and total income is denoted by I.

Max
{cit}i=1,2,3

∞∑
t=1

3

(
∑
i=1

Ui(cit) +mt) (4.6)

3∑
i=1

pitcit +mt = I

The optimization condition gives us the inverse demand function for each crop i,

pit = U
′

i (cit) = D−1
i (cit) (4.7)

4.2.4 Equilibrium Condition

In each period, total supply is the sum of total production in time t and carryover

stocks. TSit = hixityit + sit, where hi is the harvest rate for crop i. Total supply is then

consumed in time t or stored for future use,

TSit = cit + sit+1, i = 1, 2, 3 (4.8)

4.3 The Algorithms

Monomial integration is used to descretize multi-normal yield distribution in all algo-

rithms. Formulas of monomial rule used in the paper is described as the second formula

in supplementary material to Judd et. al (2011). We used code provided by Judd (2011)

to generate monomial nodes and weights. If there are three crops, the total number of

nodes There are 33 + 1 = 19. Monomial nodes are denoted by a N × 3 matrix [y1, y2, y3],

where yi is an N × 1 vector representing the all monomial nodes for crop i. w is the

weight vector where jth element is the probability for [y1(j), y2(j), y3(j)].
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4.3.1 Method 1. GSSA With Storage Rule Approximation

GSSA is an algorithm developed by Judd et al. (2011) the matlab code can be

found online. The model requires solving (4.1), (4.5), (4.7), (4.8). We approximate the

storage rules and expected revenues for crop i as functions of all state variables sit =

fi(TS1t, TS2t, TS3t) and Et(pit+1yit+1) = gi(TS1t, TS2t, TS3t), respectively. Flexible func-

tional forms ψi(TS1t, TS2t, TS3t, ai), φi(TS1t, TS2t, TS3t, bi) and vectors of coefficients ai

and bi for i = 1, 2, 3 are chosen such that fi(TS1t, TS2t, TS3t) ≈ ψi(TS1t, TS2t, TS3t, ai)

and gi(TS1t, TS2t, TS3t) ≈ φi(TS1t, TS2t, TS3t, bi). The detailed steps are as follows:

Initialization: Choose initial guesses a
(1)
i , b

(1)
i , i = 1, 2, 3. Choose the initial state

(TS10, TS20, TS30) for simulations. Choose a simulation length T , draw a sequence of

crops yields {yit}t=1,...,T , i = 1, 2, 3. The steps for generating correlated crop yields are

from (i) to (iv).

(i) Get the variance and covariance matrix for 3 crops and denote it as M . Let L be

the Cholesky decomposition of M .

(ii) Generate a T×1 vector of random normal deviates for three yields independently.

Each vector is denoted by z1, z2 and z3.

(iii) Impose the correlation by Cholesky decomposition matrix. So [z1, z2, z3]× L.

(iv) Impose the real mean yields. yi is the ith column of [z1, z2, z3] × L plus mean

yield of crop i.

Step 1. At iteration p, use
{
a

(p)
i

}
i=1,2,3

,
{
b

(p)
i

}
i=1,2,3

, calibrate for γ and simulate the

the model T periods forward.

(1i) Calibration for γ.

The base year total supplies for corn, soybean and all the others are TS10, TS20,

TS30, respectively.

Expected revenue at base year is φi(TS10, TS20, TS30; b
(p)
i ), i = 1, 2, 3.

Acreage response for crop i at base year is: dxi1
dPi0

= 1
δ

x̄i1ηi
E0(pi1yi1)

= 1
δ

x̄i1ηi

φi(TS1
0 ,TS

2
0 ,TS

3
0 ;b

(p)
i )

.

Then solve for γ using systems of equations (4.4). As b
(p)
i converges, the expected revenue

at the point of base year total supplies converges and so does γ. In this way γ is then
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calibrated in the whole algorithm. If expected revenues in the base year are fixed and γ

is fixed at the beginning of all iterations, then expected revenue is not the same as one

implied by the model.

(1ii) When expected revenues are known, solve the farmer’s constrained optimization

problem (4.1) to get xit+1, i = 1, 2, 3.

(1iii) Total supplies, stock levels and expected revenues in t+ 1 are:

TSit+1 = ψi(TS1t, TS2t, TS3t; a
(p)
i ) + hixit+1yit+1 (4.9)

sit+1 = ψi(TS1t+1, TS2t+1, TS3t+1; a
(p)
i ) (4.10)

E
(p)
t+1(pit+2yit+2) = φi(TS1t+1, TS2t+1, TS3t+1, b

(p)
i ), i = 1, 2, 3 (4.11)

The model then can be simulate T periods forward using (4.9), (4.10), (4.11).

Step 2. The storage can be approximated as:

zsit = TSit −Di(δEt(Pit+1)− SCit) (4.12)

Expected revenue for crop i in time t can be approximated as (4.13) using monomial

nodes and weights:

zepyit =
N∑
j=1

w(j)D−1
i (TSit+1,j − sit+1,j)yi(j) (4.13)

Where the next period total supply vector for all yield nodes for crop i , the next

period storage rule for each crop i at each monomial node j and Expected price for crop

i in time t are defined by

TSit+1,j = sit + hitxit+1yi(j)

sit+1,j = ψi(TS1t+1,j, TS2t+1,j, TS3t+1,j, a
(p)
i )

Et(pit+1) =
N∑
j=1

w(j)D−1
i (TSit+1,j − sit+1,j)
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Step 3. Find {âi}i=1,2,3 and {b̂i}i=1,2,3 that minimize the errors εit, ζit in the regression

equation using LAD method as described in Judd et. al (2011).

zsit = ψi(TS1t, TS2t, TS3t, a
(p)
i ) + εit, i = 1, 2, 3 (4.14)

zepyit = φi(TS1t, TS2t, TS3t, b
(p)
i ) + ζit, i = 1, 2, 3 (4.15)

Step 4. Check the convergence and end (2) if

1

T

T∑
1

3∑
i=1

(| s
(p)
it − s

(p−1)
it

s
(p−1)
it

| + | E
(p)
t (pityit)− E(p−1)

t (pityit)

E
(p−1)
t (pityit)

|) < ε (4.16)

where s
(p)
it ,s

(p−1)
it , E

(p)
t (pityit), E

(p−1)
t (pityit) are the storage and expected revenue series

obtained on iteration p and p− 1.

Step 5. Compute a
(p+1)
i and b

(p+1)
i for iteration (p+ 1) for i = 1, 2, 3.

a
(p+1)
i = (1− ξ)a(p)

i + ξâi (4.17)

b
(p+1)
i = (1− ξ)b(p)

i + ξb̂i (4.18)

where ξ ∈ (0, 1] is a damping parameter. Go to (2) with new coefficients a
(p+1)
i , b

(p+1)
i

and stop the iteration until convergence criterion is reached.

4.3.2 Smolyak Collocation Method

The Smolyak method was found by Smolyak (1963) to approximate multivariate

functions. Compared to the use of standard tensor grids, Smolyak grids require fewer

support nodes. For example, if we want to approximate an N dimensional function. The

number of tensor nodes is 5N if using 5 points for each dimension. When N = 10, the

total number of collocation nodes equals 9,765,625, in which case we will face the curse of

dimensionality. Smolyak nodes are constructed by the levels of approximation. Higher

approximation level leads to higher accuracy. For 10 dimension with 2nd, 3rd or 4th



www.manaraa.com

71

level approximation, the Smolyak grid requires 221 points, 1581 points and 8801 points

respectively. Thus, the Smolyak method makes it feasible to solve high dimensional

models.

4.3.3 Method 2 Smolyak Collocation with Storage Rule Approximation

Step 1: Define the interval for state variables. Let the total supply of crop i lies in

[TSimin, TS
i
max], i = 1, 2, 3. The minimum and maximum total supply values should not

be violated in iterations.

At each Smolyak grid point (TS1k, TS2k, TS3k), k = 1, ...K, guess K × 1 coefficient

vectors ai = [ai1, ..., aiK ] and bi = [bi1, ..., biK ], i = 1, 2, 3. Storage levels are approximated

as sik = fd,µ(TS1k, TS2k, TS3k; ai), i = 1, 2, 3, expected revenues are approximated as

epyik = fd,µ(TS1k, TS2k, TS3k; bi), i = 1, 2, 3. fd,µ will be defined later by (4.23). d is

the number of dimensions and µ is the approximation level.

Equidistant grid points performs worse than Chebyshev-based nodes for interpola-

tion, therefore Chebyshev-Gauss-Lobatto grid is used as suggested in Klimke (2006).

Chebyshev-Gauss-Lobatto grid is a kind of sparse grid using extrema of Chebyshev

polynomials. The details of forming uni-dimension Chebyshev-Gauss-Lobatto grid can

be found in Judd et al. (2013) appendix A. We use the sparse grid interpolation toolbox

developed by Andreas Klimke (2007) to obtain the Chebyshev-Gauss-Lobatto points.

To see how the Smolyak grids are constructed. We first show the nodes constructed

in unidimentional. Then we show a special case used in our algorithm, three dimensional

with three approximation level.

The part of forming grid points and basis functions follows Malin et. al (2007) and

Judd et al. (2013), the set of grid point Xi is defined as the set of the extrema of the

Chebyshev polynomials with a number of m(i) points in each set. m(i) = 2i−1 + 1 when

i > 2 and m(1) = 1.

The formula for extrema of the Chebychev polynomials is Xi = −cos( π(i−1)
m(i)−1

) i =

1, 2, ...,m(i).
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The set for extrema of the Chebyshev polynomials are:

i = 1, X1 = {0};

i = 2, X2 = {−1, 0, 1};

i = 3, X3 = {−1,− 1√
2
, 0, 1√

2
, 1};

when i = 5, there are 17 points in the set, the set of grid points X5 = −cos(π(i−1)
17−1

), i =

1, 2, ..., 17.

From the construction, we can see that Xi is a subset of Xj when j > i.

For higher dimensions, the Chebyshev-Gauss-Lobatto grid is formed as follows:

In the three dimensional case, we must select tensor products of points selected from

unidimension according to

d 6 i1 + i2 + i3 6 d+ µ.

For example, in the three dimensional case, d = 3.

If µ = 1, 3 6 i1+i2+i3 6 4. Thus the sets for {(i1, i2, i3)} = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1)}.

Given a value of i1, i2, i3, find the set of extrema of the Chebychev polynomials (Xi)

in each dimension with i = i1, i = i2, i = i3.

When i1 = 1, i2 = 1, i3 = 1, then the tensor product of the unidimentional nodes of

each dimension is {(0, 0, 0)}.

When i1 = 1, i2 = 1, i3 = 2, we have X2 for the third dimension and X1 for the other

dimensions. The tensor product of the points are {(0, 0, 0), (0, 0, 1), (0, 0,−1)}.

Doing this for all {i1, i2, i3}, we have seven points in the first level approximation are

{(0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0)}.

If µ = 2, 3 6 i1+i2+i3 6 5, There are several combinations of i1, i2, i3 that satisfy this

restriction: {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.

Thus we have 25 Smolyak grid points,

{(0, 0, 0), (0, 0, 1), (0, 0,−1), (0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0), (0, 0,− 1√
2

), (0, 0,
1√
2

),

(0,− 1√
2
, 0), (0,

1√
2
, 0), (− 1√

2
, 0, 0), (

1√
2
, 0, 0), (0,−1,−1), (0,−1, 1), (0, 1,−1), (0, 1, 1),

(−1, 0,−1), (−1, 0, 0), (1, 0,−1), (1, 0, 1), (−1,−1, 0), (−1, 1, 0), (1,−1, 0), (1, 1, 0)}
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If µ = 3, 3 6 i1 + i2 + i3 6 6. The i1, i2, i3 satisfy for the restriction are

{(i1, i2, i3)} = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2),

(2, 1, 2), (2, 2, 1), (1, 1, 4), (1, 4, 1), (4, 1, 1), (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 2, 1), (3, 1, 2)}.

and there are 69 Smolyak grid points.

Step 2: Construct Smolyak Chebyshev basis functions. Here we only provide the

details for 3 dimensions (d) with 3rd approximation level (µ) . The Smolyak polynomial

function is given by a general form:

fd,µ(TS1k, ..., TSnk; a) =
∑

max(d,µ+1)≤|i|≤d+µ

(−1)d+µ−|i|(
d− 1

d+ µ− |i|
)p|i|(TS1k, ..., TSnk)

(4.19)

(−1)d+µ−|i|(
d− 1

d+ µ− |i|
) = (−1)d+µ−|i| (d+µ−|i|)!

(d−1)!(µ−|i|+1)!
is a counting coefficient to insure

that there are no repeated basis functions. n is the number of state variables. A tensor

product operator p|i|(TS1k, ..., TSnk) is defined as

p|i|(TS1k, ..., TSnk) =
∑

i1+...+id=|i|

pi1,...,id(TS1k, ..., TSnk) ,

where pi1,...,id is defined as

pi1,...,id(TS1k, ..., TSnk) =

m(i1)∑
l1=1

...

m(id)∑
ld=1

al1...ldψl1(TS1k)...ψld(TSnk) ,

where m(ij) = 2ij−1 + 1, ij ≥ 2, m(1) = 1. In our example we have d = 3, µ = 3,

n = 3. Counting factor is (−1)3+3−|i|(
3− 1

3 + 3− |i|
), |i| = 4, 5, 6, al1...ld are the coefficients.

We have

p4 = p1,1,2 + p1,2,1 + p2,1,1 (4.20)

p5 = p1,1,3 + p1,3,1 + p3,1,1 + p1,2,2 + p2,2,1 + p2,1,2 (4.21)
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p6 = p1,1,4 + p1,4,1 + p4,1,1 + p2,1,3 + p2,2,2 + p3,1,2 (4.22)

let cj1j2j3 represents al1l2l3ψl1(TS1k)ψl2(TS2k)ψl3(TS3k). ψl1(TS1k)ψl2(TS2k)ψl3(TS3k)

is a basis function where ψ(·) is Chebyshev polynomial basis function.

The Smolyak polynomial function is:

f 3,3(TS1k, TS2k, TS3k; a) = c111 + c112 + c113 + c114 + c115 + c116 + c117 + b118 + c119 + c121

+c131 + c141 + c151 + c161 + c171 + c181 + c191 + c211 + c311 + b411

+c511 + c611 + c711 + c811 + c911 + c122 + c123 + c124 + c125 + b132

+c133 + c134 + c135 + c142 + c143 + c152 + c153 + c212 + c213 + b214 (4.23)

+c215 + c312 + c313 + c314 + c315 + c412 + c413 + c521 + c531 + b221

+c231 + c241 + c251 + c321 + c331 + c341 + c351 + b421 + c431 + b521

+c531 + c222 + c223 + c232 + c322 + c333 + c332 + c333 + c323 + c323 + c233 (4.24)

The set of Chebyshev polynomial basis functions are defined recursively as follows:

ψ1(x) = 1, ψ2(x) = x, ψn(x) = 2xψn−1(x)− ψn−2(x). The Chebyshev matrix is denoted

by Φ. In this case Φ is a 69× 69 matrix.

Approximate storage and expected revenues for each crop i as follows:

sik = fd,µ(TS1k, ..., TSnk; ai).

epyik = fd,µ(TS1k, ..., TSnk; bi), where fd,µ is defined as equation (4.19).

Step 3. At iteration p, use
{
a

(p)
i

}
i=1,2,3

,
{
b

(p)
i

}
i=1,2,3

. Calibrate for γ.

(3i) The base year total supplies for corn, soybean and all the others are TS10, TS20,

TS30. All Chebyshev-Gauss-Lobatto grid points are normalized to [−1, 1], so we need

to normalize total supplies in the base year before constructing the base year expected

revenues.

TS1
0 =

2(TS10−TS1
min)

(TS1
max−TS1

min)
− 1, TS2

0 =
2(TS20−TS2

min)

(TS2
max−TS2

min)
− 1, TS3

0 =
2(TS30−TS3

min)

(TS3
max−TS3

min)
− 1.

(3ii) Expected revenues at base year are f 3,3(TS1
0 , TS

2
0 , TS

3
0 ; b

(0)
i ), i = 1, 2, 3.

Acreage responses at base year are: dxi1
dPi0

= 1
δ

x̄i1ηi
E0(pi1yi1)

= 1
δ

x̄i1ηi

f3,3(TS1
0 ,TS

2
0 ,TS

3
0 ;b

(0)
i )

, i =

1, 2, 3. Then solve γ using (4.4).
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Step 4. At each grid point k, solve the optimal acreage decisions xik, i = 1, 2, 3,

solve storage and expected revenue at each grid point using monomial integration of

expectations. The expected revenues are

zepyik =
N∑
j=1

w(j)D−1
i (TSikj−f 3,µ(TS1kj, TS2kj, TS3kj; a

(p)
i ))yi(j), i = 1, 2, 3, k = 1, 2, ...K.

(4.25)

The storage levels are

zsik = TSik −Di(δepik − SCik), i = 1, 2, 3, k = 1, 2, ..., K. (4.26)

where the expected prices are

epik =
N∑
j=1

w(j)D−1
i (TSikj − f 3,µ(TS1kj, TS2kj, TS3kj; a

(p)
i )), l = 1, 2, 3, i = 1, 2, 3.

(4.27)

The next period total supply for crop i with yield yi(j) is TSnikj = f 3,µ(TS1k, TS2k, TS3k; a
(p)
i )+

hixikyi(j). Because we need to transform our nodes which normalized in the interval

[−1, 1] to the interval [TSimin, TS
i
max], each crop i will be TSikj =

(TSnikj+1)

2
(TSimax −

TSimin) + TSimin

Step 5. See if the approximated storage and expected revenue have converged

1

K

K∑
1

3∑
i=1

(| s
(p)
ik − s

(p−1)
ik

s
(p)
ik

| + | epy
(p)
ik − epy

(p−1)
ik

epy
(p−1)
ik

|) < ε (4.28)

Step 6. Update the coefficients if the convergence criterion is not satisfied.

zsi is a K × 1 vector with kth element equals to zsik. z
epy
i is a K × 1 vector with kth

element equals to zepyik .

a
(p+1)
i = (1− ξ)a(p)

i + ξΦ−1zsi , i = 1, 2, 3. (4.29)

b
(p+1)
i = (1− ξ)b(p)

i + ξΦ−1zepyi , i = 1, 2, 3. (4.30)

Step 7. go to step 3 until the condition in step 5 is satisfied.
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4.3.4 Method 3. Smolyak Collocation with Expected Price Approximated

Initialization. storage levels of three crops are state variables. Pick grid points and

construct basis functions as described in method 2. The Chebyshev matrix is denoted

by Φ.

Step 1. Define the intervals for state variables. The storage levels of three crops is

contained in [0, simax] for i = 1, 2, 3.

At each collocation node (s1k, s2k, s3k), expected prices are approximated as epik =

f 3,µ(s1k, s2k, s3k; a
(0)
i ), expected revenues are approximated as epyik = f 3,µ(s1k, s2k, s3k; b

(0)
i )

where
{
a

(0)
i

}
i=1,2,3

,
{
b

(0)
i

}
i=1,2,3

are coefficient vectors with initial guesses.

Step 2. At iteration p, use a
(p)
i , b

(p)
i . Calibrate γ. The base year observed storage

levels for corn, soybean and all the others are s10, s20, s30. Normalize storage levels to

[−1, 1].

s1
0 = 2s10

s1max
− 1, s2

0 = 2s20
s2max
− 1, s3

0 = 2s30
s3max
− 1.

Expected revenues at base year are f 3,3(s1
0, s

2
0, s

3
0; b

(0)
i ), i = 1, 2, 3.

Acreage responses at base year are: dxi1
dPi0

= 1
δ

x̄i1ηi
E0(pi1yi1)

= 1
δ

x̄i1ηi

f3,3(s10,s
2
0,s

3
0;b

(0)
i )

, i = 1, 2, 3.

Then solve γ using systems of equations (4.4).

Step 3. For each collocation node, solve the optimal acreage decision xik, i = 1, 2, 3.

Solve the storage decision at each grid point and each monomial node, where sikj is

the storage decision solved from the non-arbitrage condition:

δf 3,µ(s1kj, s2kj, s3kj; ai)−D−1
i (TSikj − sikj)− SCikj = 0, i = 1, 2, 3 (4.31)

where total supply for crop i is TSikj = sik + hixikyi(j).

Thus the expected revenues are

zepyik =
N∑
j=1

w(j)D−1
i (TSikj − sikj)yi(j), i = 1, 2, 3, k = 1, 2, ..., K (4.32)

The expected prices are

zepik =
N∑
j=1

w(j)D−1
i (TSikj − sikj), i = 1, 2, 3, k = 1, 2, ..., K (4.33)
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Step 5. See if the approximated expected prices and expected revenues converges

1

K

K∑
1

3∑
i=1

(| ep
(p)
ik − ep

(p−1)
ik

ep
(p)
ik

| + | epy
(p)
ik − epy

(p−1)
ik

epy
(p−1)
ik

|) < ε (4.34)

Step 6. If not, update the coefficients:

a
(p+1)
i = (1− ξ)a(p)

i + ξΦ−1zepyi , i = 1, 2, 3. (4.35)

b
(p+1)
i = (1− ξ)b(p)

i + ξΦ−1zepik , i = 1, 2, 3. (4.36)

zepyi is a K × 1 vector with zepyi (k) = zepyik , zepi is a K × 1 vector with zepi (k) = zepik .

step 6. go to step 2 until the condition in step 5 is satisfied.

4.4 Calibration for the Model

The model is calibrated to corn, soybeans and “others” which include wheat and

cotton for simplicity in this example.

4.4.1 Land Allocation

We calibrate the land allocation problem to exogenous elasticities and endogenous

expected revenue so that the optimal allocation is the same as what was projected to

happen in 2013/14 according to WASDE 2013/14 January report. The acreages allocated

to corn, soybean and other in the base year are 95.4 million acres, 74.5 million acres and

66.61 million acres, respectively. Thus, total acreage is 238.51 million acres for all time

periods. The exogenous supply elasticities for corn, soybean and all others are assumed

to be 0.25, 0.2, 0.2 as illustration purposes. Land rent is assumed to be $200 per acre,

we’ll have λ̄ = 200.



www.manaraa.com

78

4.4.2 Yield Distributions

National crop yields from 1970 to 2013 given by USDA NASS are employed to get the

yield distributions. All crop yield distributions are assumed to be normal for illustration

of the approach. Detrended data for each crop is used separately to fit a normal distri-

bution with mean µ and standard deviation σ, N(µ, σ2), we have corn yield in bushel

per acre, y1 ∼ N(157, 15.42), soybean yield in bushel per acre, y2 ∼ N(43.6, 3.182). The

yield data for other in each year is the average yield of wheat and cotton weighted by

output. Thus yield distribution for others is y3 ∼ N(1.1801, 0.08182) with tons per acre

as the unit. The correlation between crop yield variables are also calculated using the

same detrended crop yield data. The covariance between crop i and crop j is estimated

as

COVij =
1

N

N∑
t=1

(yit − yi)(yjt − yj) (4.37)

whereN is the total number of observations, yit is the detrended yield for crop i at year

t and ȳi is the average yield for crop i for all observations. The covariance between crops

are COV12 = 21.34, COV13 = 0.20704, COV23 = −0.02897. With the above information,

we can construct the variance covariance matrix for the multivariate normal distribution

for all three crops. Using Cholesky decomposition, the variance covariance structure is

imposed on the simulated yields.

4.4.3 Demand Functions

Demand functions are assumed to be constant elasticity:

D−1(·) = α1ic
−α2i
i , i = 1, 2, 3 (4.38)

The demand parameters are calibrated to the total use and average prices received by

farmers for 2013/14. Total use of corn including food, feed, export and ethanol is 13.150

billion bushels. Total use of soybean is 3.3040 billion bushels. Average prices received
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by farmers for corn and soybean are $4.4 per bushel and $12.5 per bushel. Total use and

price of wheat and cotton, defined as average of wheat and cotton weighted by output,

are 68.36 million tonnes and $312.4 /ton. In our program, we set the units for quantities

of corn and soybean to be 10 billion bushels. The units for all the other to be 100 million

tonnes. The price units are dollar per bushel for corn and soybean and dollar per tonne

for the other crops. Demand elasticities for corn, soybean -0.44 (Adjemian and Smith.

(2012)) and -0.236 (Roberts and Schlenker (2013)). The other crop demand elasticity is

assumed to be -0.1 as an illustration purpose. Thus we have α11 = 8.192456, α21 = 2.27,

α12 = 0.114537, α22 = 4.237288, α13 = 0.069614, α23 = 10.

4.4.4 Storage Cost and Marginal Convenience Yield

The storage cost per unit includes per unit observed cost and per unit unobserved

cost. The observed part of the storage cost (OSC) is a constant physical storage cost

paid by the storer. We assume the observed per bushel storage cost is 3 cents per

bushel per month (Peterson and Tomek (2010)). The yearly observed storage cost is

thus $0.36 per bushel, OSC = 0.36. One component of unobserved storage cost is

the opportunity cost that increases with stock level when stock levels are large. This

is because holding more stock of one crop decreases the opportunity of holding other

more profitable crops (Paul (1970)). The other unobserved storage cost is the marginal

convenience yield. We can get unobserved storage cost from the storage non-arbitrage

condition: USCit = δEt(pit+1) − pit − OSCit. We collect our data including current

price pt, expected price pt+1 from 2001/2002 to 2011/2012. Use average price received

by the farmer in each marketing year from USDA NASS for the current year price. For

corn, the December corn futures price from September 1st to August 31st is used as

the average of yearly expected price. The discount factor, δ, is defined as 1
1+r

where r

is the interest rate. We use the return for 1-year treasury constant maturities as risk

free interest rate. The unobserved storage cost should be increasing with stock level and

it is negative when stock level st is small and positive when stock level is high. Rui
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and Miranda (1995) uses a logarithmic function to achieve it. In Tomek and Peterson

(2005), they incorporate expected total supply in marginal convenience yield function

and successfully avoid stockout condition using that specification. Because current price

indicates relative shortage of the crop (Na jin(2013)), we assume the unobserved cost

is also increasing in price when it is positive, UOCit = pitlog(ai + bisit+1) where ai and

bi are parameters needed to be calibrated. For each crop i, when stock level is low,

log(ai + bisit+1) is negative, current price is positive, unobserved storage cost is negative.

When stock level is large, the unobserved storage cost is positive.

For soybean and the other crops, the soybean expected price is the average of Novem-

ber Soybean futures from September 1st to August 31st. We use wheat unobserved cost

to represent the expected price of other crops. Wheat expected price is the average of

July wheat futures from June 1st to May 31st.

We use two points to calibrate the parameters ai and bi in the unobserved marginal

cost function. One point is the unobserved cost/current price and end year stock in

2012/13. The other point is the (average unobserved cost)/price and average ending

stock from 2001/02 to 2012/13. Thus we find that ai = 0.5229, bi = 0.2772. for soybean

ai = 0.5488, bi = 0.1593, for all others ai = 0.1799, bi = 0.1286.

4.4.5 Beginning Stock

The base year is set to be 2013/14, beginning stocks for corn and soybean are 0.0821

10 billion bushels and 0.0141 10 billion bushels. The other stock is the sum of wheat

stock and cotton stock. Wheat stock is 718 million bushels and cotton stock is 3.9× 480

pounds. Then the total stock is 0.203897 100 million tons. The total supply for corn,

soybean and all the others are 1.4781 10 billion bushels, 0.3454 10 billion bushels and

0.8550 100 million ton.
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4.4.6 Harvest Rate

The harvested acres is less than the acres planted depending on weather conditions.

The harvest rate is defined as the ratio of harvested acreage to the planted acreage. The

harvest rates for corn, soybean and all other crops are assumed to be 92%, 99% and 85%

respectively.

4.5 Accuracy Test for Algorithms 1, 2 &3

The purpose of this part is to subject the candidate solutions to an independent and

stringent test and compare the the quality of the solutions among the three algorithms.

GSSA and Smolyak collocation method both solving the approximated solutions function

forms using a finite set of points. In the accuracy check, we want to see how the candidate

solutions perform for other points in the state space.

Euler equation (EE) error developed in Judd (1992) is used to evaluate how accurate

the solutions are. The accuracy tests require to check how far the Euler equations

for both storage and acreage decisions holds from zero when using the approximated

solution functions. This bounded rationality measure allows us to evaluate the one period

optimization error or how much resource is wasted using the approximated solution in a

unit free form.

Below shows how to conduct an accuracy test for GSSA. Using simulation to generate

points in the state space for the test. Total supplies for three crops in 2013/14 are used

as the starting point. Construct another set of crop yields {yiτ}τ=1,...,T test , i = 1, 2, 3

from the joint distribution of three crop yields, with the length of period T test = 10, 000.

Using the solved rules for storage and expected prices to simulate a time series of total

supply of all crops for 10,000 periods.

EE error is developed from Euler equation for storage

TSiτ − siτ (TS1τ , TS2τ , TS3τ ) = Di(δEt(piτ+1)− SCiτ ) (4.39)
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The left hand side of (4.39) is today’s consumption given today’s storage decision.

The right hand side is what today’s consumption would be if the represented storer using

storage rule in the next period which determines Et(piτ+1). The EE error shows how

much the storer’s deviation from the optimization rule. The Euler Equation error is then

defined in a unit free way as shown in (4.40).

EEsiτ = 1− Di(δEt(piτ+1)− SCiτ )
TSiτ − siτ (TS1τ , TS2τ , TS3τ )

(4.40)

The subscript s means EE for storage Euler equation, i denotes a specific crop. log10

of EE is used to show the error. To interpret the error, EE = −1 means the consumer

makes a 1 dollar mistake in consumption when spending 10 dollars. EE = −4 means

the consumer makes a 1 dollar mistake when spending 10000 dollars.

We can get EE errors for acreage decision Euler equations in the same way. From

the F.O.C. of the farmer’s maximization problem, we have

xiτ =
1

γi
(δEt(piτ+1yiτ+1)− E0(pi1yi1) + λ) + x̄i −

1

γi
λτ (4.41)

Where λτ is the Lagrangian multiplier with land constraint in time τ . As the expected

revenues are approximated, for any given total supply, the Euler equation holds. Define

the unit free Euler equation error for acreage planted as:

EExiτ = 1− 1

xiτ
(

1

γ1

(δEt(piτ+1yiτ+1)− E0(pi1yi1) + λ) + x̄i −
1

γi
λτ ) (4.42)

The subscript x means EE for acreage Euler equation. The log10|EEH | shows the mistake

made by making the acreage decision. -1 mean the farmer make 1 acre mistake by

planting 10 acres. -4 means the representative profit optimizing farmer make 1 acre

mistake when planting 10,000 acres.

For each period τ , compute EEsiτ , EExiτ , i = 1, 2, 3. We evaluate the quality of a

candidate solution by computing the maximum and mean of the EEsiτ and EExiτ for

τ ∈ [1, T test].
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GSSA with 700 time series and 3rd order polynomial basis functions takes 944 seconds,

however the accuracy is the worst among the three for all EE errors. The maximum EE

errors for for corn and soybean are above -2. Because of the low approximation quality, we

don’t show the EE errors for each for other Euler equation in details. When changing the

basis functions to Chebyshev polynomials or increase the basis functions to 4th order

polynomials, the maximum Euler equation error across all equations doesn’t decrease

below -2.

Table 1-2 below show both the maximum errors and mean errors across 10,000 pe-

riods for sparse grid with storage approximation and sparse grid with expected price

approximation. To read the data from the tables below, −2 means the maximum or

mean error is 10−2.

Sparse grid with storage rule approximation and Smolyak grid to 3rd order. Compu-

tational time is 236 seconds. Except for soybean storage, all maximum Euler equation

error lies below -3 which mean a maximum 1 dollar error for a 1000 dollars consumption.

The maximum error in soybean is 10−2.95 ≈ 0.0011. Maximum Euler equation error is

largest in soybean Euler equations across 10,000 periods indicating that soybean storage

rule is more nonlinear comparing to corn and other crop sotrage rules. This can be seen

from Figure 1.1, Figure 2.1 and Figure 2.2.

The same approach with 4th level approximation takes 912 seconds and the absolute

maximum EE across drops by 0.5 from the 3rd level aproximation. The maximum mean

value of EE errors across all Euler euqations is −4.57.

Table 4.1: Euler equation errors for sparse grid with storage rule approximation

Storage Euler EquationsAcreage Euler Equations

EE EEc EEs EEo EExc EExs EExo

3rd max -2.95 -2.88 -3.21 -3.77 -3.70 -3.01

µ level mean -4.26 -3.82 -4.20 -4.99 -4.72 -4.57

4th max -3.70 -3.46 -3.64 -4.66 -4.54 -4.07

level mean -4.99 -4.85 -4.95 -5.60 -5.69 -5.01
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Computational time for sparse grid with expected price approximation is 3747 sec-

onds. The EE errors for storage Euler equation are smaller than those using method

2. However, the EE errors for accreage decisions are greater than that using method 2.

Maximum absolute EE error across all Euler equations is -3.28. Parameterized expected

price takes more time but performs better than storage rule approximation with the

same number of grid points. This findings are the same as Gouel (2013).

Table 4.2: Euler equation errors for sparse grid with expected price approximation

EE EEc EEs EEo EExc EExs EExo

max -4.02 -4.04 -3.93 -3.84 -3.82 -3.28

mean -5.21 -5.22 -4.81 -5.21 -5.20 -4.43

4.6 Simulation Results

We use the solution functions got from algorithm 2 with 4th level approximation to

simulate the model. Various functions of total supply of corn are shown by Figure 1.1-

1.4. In each graph, the dotted lines, solid lines and dashed lines represent functions given

low supplies, medium supplies and high supplies of soybean and other crops respectively.

Low supplies are defined as TSs = 2.7 billion bushels, TSo = 70 million tons. Medium

supplies are defined as TSs = 3.454 billion bushels, TSo = 85.59 million tons. High

supplies are defined as TSs = 4 billion bushels, TSo = 110 million tons. The medium

supplies for all three crops are set to be the real total supplies in 2013/14 marketing

year.

Figure 1.1 shows that stock level rises with higher supply level. For higher supplies

of both soybean and other crops, the whole storage curve shifts to the right. To see why,

when total supplies for soybean and other crops rise in this period, the acreage decisions

for other two crops except corn decrease. As land constraint binds, corn acreage must

increase and the corn storage decreases at each total supply level because there is not

need to store as much when expected supply increases.
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Both the expected price and the acreage level of corn fall with higher corn supply

given fixed soybean and other crops levels as described by Figure 1.2 and 1.3 respectively.

The reason is that for a certain total corn supply, higher supplies of soybean and other

crops result in lower acreage level for these two. In corresponse, corn acreage rises in

the binding constraint in Figure 1.3 and thus expected corn price decreases as shown by

figure 1.2.

The current corn price decreases with an increasing rate as corn supply rises for fixed

values of soybean and other crop total supplies as shown in Figure 1.4. Different total

supplies of the other two crops shift little of the current prices.
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In order not to bore the readers, we will only show the storage curve for soybean and

all the others as their own total supply rises given low medium and high corn and other

supplies in Figures 2.1 and Figure 2.2 using dotted lines, solid lines and dashed lines.

Low corn supply is defined as TSc = 10 billion bushels, medium corn supply is defined

as TSc = 14.781 billion bushels, high corn supply is defined as TSo = 18 billion bushels.

Soybean storage curve looks similar to corn’s. Considering the scales of stock levels for

soybean and corn in Figure 2.1 and 1.1, the soybean storage function is more nonlinear.

The storage curve for all other crops is almost linear in the graph, and the curve does

not respond much to different supply levels of the other two crops. The more linearity

in the other stock curve leads to higher accuracy in storage rule approximation.

4.6.1 Shocks of Corn Yield

In this part, we show how decisions and prices respond to a high yield, mean yield

and low yield in the second period. High corn yield, medium corn yield and low corn

yield are defined as 170 bu/acre, 157 bu/acre and 120 bu/acre. As shown in Table 3, the

yield shock only happens in the second period in all three periods. Corn yield stays at

157 bu/acre for the rest two periods. Yields of soybean and all others are at the mean

levels for all periods. Mean yield values of soybean all other crops are 43.8 bushels per

acre and 1.18 tons per acre.
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Table 4.3: Corn Yield Shock in 2nd Period

Period 1 2 3

mean 157 157 157
low 157 120 157
high 157 170 157

Figure 3.1-3.4 describe how storage decisions, expected prices, harvested acres and

current prices of corn change with yield shock respectively. Total supply in 2nd period

rises with an increase in crop yield. Thus the stock level is highest among the three

cases as shown in Figure 3.1. Figure 3.2 says that the expected prices rise and fall in

the opposite direction with total supply. With bumper crop, expected corn prices fall.

As shown by Figure 3.3 and 3.4, the acreage decisions and current prices perform in the

same pattern as expected prices. Changes of corn acreage is associated with expected

revenue. Corn yield is low, the expected corn price will be higher, then the acreage

harvested will be higher.

To see the impacts of yield shock for decisions and prices of crops other than corn,

we use soybean as an example and the results are shown by Figure 4.1-4.4. Figure 4.1

depicts that all else being equal, if the corn supply is relatively higher, soybean stock

levels will be lower. To explain it, considering an increase in corn supply due to the

yield shock, the expected revenue decreases and hence the corn acreage for next year

decreases. The decrease in the corn acreage will lead to an increase in soybean acreage

(Figure 4.3), implying a fall in expected prices of soybean (Figure 4.2) and the level of

stock levels of the two stocks (Figure 4.1). The total supplies of soybean are the same

in 2nd period with the same soybean yields and acreage levels. Thus current prices of

soybean are only determined by the storage decisions. As we can see from Figure 4.4,

higher carryover stock leads to higher current soybean prices while lower carryover stock

result in lower current soybean price.
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4.7 Conclusions

Smolyak collocation methods perform better than GSSA considering computational

time and accuracy in solving multi-crop storage model.

The most promising approach for solving a extended model with crops more than

three crops is Smolyak collocation method with storage rule approximation. At the

same time, there are also several approaches to improve the current method as described

by Judd et. al (2013), e.g. put more grid points to those dimensions that are most

important for overall quality of approximation. In our case, this means we may put

more grid points to descretize soybean total supply space in method 2.
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Another condition for making the second method favorable is the assumption of

convenience yield without which there will be stock out conditions and a kink in the

storage function. The difficulties of approximating a function with kink will bring the

accuracy for all the second algorithm down to the unacceptable level. In this case, the

3rd algorithm that approximate more smooth expected price functions could be used

instead.
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